Skip to main content
Log in

Modularity-like objective function in annotated networks

  • Research article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

We ascertain the modularity-like objective function whose optimization is equivalent to the maximum likelihood in annotated networks. We demonstrate that the modularity-like objective function is a linear combination of modularity and conditional entropy. In contrast with statistical inference methods, in our method, the influence of the metadata is adjustable; when its influence is strong enough, the metadata can be recovered. Conversely, when it is weak, the detection may correspond to another partition. Between the two, there is a transition. This paper provides a concept for expanding the scope of modularity methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Fortunato, Community detection in graphs, Phys. Rep. 486(3–5), 75 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  2. M. E. J. Newman, Communities, modules and largescale structure in networks, Nat. Phys. 8(1), 25 (2011)

    Article  Google Scholar 

  3. S. Fortunato and D. Hric, Community detection in networks: A user guide, Phys. Rep. 659, 1 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  4. A. Decelle, F. Krzakala, C. Moore, and L. Zdeborová, Inference and phase transitions in the detection of modules in sparse networks, Phys. Rev. Lett. 107(6), 065701 (2011)

    Article  ADS  Google Scholar 

  5. A. Decelle, F. Krzakala, C. Moore, and L. Zdeborová, Asymptotic analysis of the stochastic block model for modular networks and its algorithmic applications, Phys. Rev. E 84(6), 066106 (2011)

    Article  ADS  Google Scholar 

  6. B. Karrer and M. E. J. Newman, Stochastic blockmodels and community structure in networks, Phys. Rev. E 83(1), 016107 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  7. M. E. J. Newman and M. Girvan, Finding and evaluating community structure in networks, Phys. Rev. E 69(2), 026113 (2004)

    Article  ADS  Google Scholar 

  8. M. E. J. Newman and T. Peixoto, Generalized communities in networks, Phys. Rev. Lett. 115(8), 088701 (2015)

    Article  ADS  Google Scholar 

  9. M. E. J. Newman and G. Reinert, Estimating the number of communities in a network, Phys. Rev. Lett. 117(7), 078301 (2016)

    Article  ADS  Google Scholar 

  10. M. E. J. Newman and A. Clauset, Structure and inference in annotated networks, Nat. Commum. 7, 11863 (2016)

    Article  ADS  Google Scholar 

  11. M. E. J. Newman, Analysis of weighted networks, Phys. Rev. E 70(5), 056131 (2004)

    Article  ADS  Google Scholar 

  12. E. A. Leicht and M. E. J. Newman, Community structure in directed networks, Phys. Rev. Lett. 100(11), 118703 (2008)

    Article  ADS  Google Scholar 

  13. M. J. Barber, Modularity and community detection in bipartite networks, Phys. Rev. E 76(6), 066102 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  14. P. J. Mucha, T. Richardson, K. Macon, M. A. Porter, and J. P. Onnela, Community structure in timedependent, multiscale, and multiplex networks, Science 328(5980), 876 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. P. Zhang and C. Moore, Scalable detection of statistically significant communities and hierarchies, using message passing for modularity, Proc. Natl. Acad. Sci. USA 111(51), 18144 (2014)

    Article  ADS  Google Scholar 

  16. M. E. J. Newman, Equivalence between modularity optimization and maximum likelihood methods for community detection, Phys. Rev. E 94(5), 052315 (2016)

    Article  ADS  Google Scholar 

  17. A. Condon and R. M. Karp, Algorithms for graph partitioning on the planted partition model, Random Structures Algorithms 18(2), 116 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. R. Guimerà, M. Sales-Pardo, and L. A. N. Amaral, Modularity from fluctuations in random graphs and complex networks, Phys. Rev. E 70, 025101(R) (2004)

    Article  ADS  Google Scholar 

  19. T. P. Peixoto, Hierarchical block structures and highresolution model selection in large networks, Phys. Rev. X 4(1), 011047 (2014)

    Google Scholar 

  20. B. H. Good, Y. A. de Montjoye, and A. Clauset, Performance of modularity maximization in practical contexts, Phys. Rev. E 81(4), 046106 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  21. This research uses data from Add Health, a program project directed by K. M. Harris and designed by J. R. Udry, P. S. Bearman, and K. M. Harris at the University of North Carolina at Chapel Hill, and funded by grant P01-HD31921 from the Eunice Kennedy Shriver National Institute of Child Health and Human Development, with cooperative funding from 23 other federal agencies and foundations. Special acknowledgment is due R. R. Rindfuss and B. Entwisle for assistance in the original design. Information on how to obtain the Add Health data files is available on the Add Health website (http://www.cpc.unc.edu/addhealth). No direct support was received from grant P01-HD31921 for this analysis.

  22. M. Bastian, S. Heymann, and M. Jacomy, Gephi: An open source software for exploring and manipulating networks, in: International AAAI Conference on Weblogs and Social Media, 2009

    Google Scholar 

  23. M. Jacomy, T. Venturini, S. Heymann, and M. Bastian, ForceAtlas2, a continuous graph layout algorithm for handy network visualization designed for the Gephi software, PLoS One 9(6), e98679 (2014)

    Article  ADS  Google Scholar 

  24. L. Danon, A. Díaz-Guilera, J. Duch, and A. Arenas, Comparing community structure identification, J. Stat. Mech. 09, P09008 (2005)

    Google Scholar 

Download references

Acknowledgements

This work was funded by the National Natural Science Foundation of China (Grant Nos. 11275186, 91024026, and FOM2014OF001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing-Hong Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, JR., Wang, BH. Modularity-like objective function in annotated networks. Front. Phys. 12, 128903 (2017). https://doi.org/10.1007/s11467-017-0657-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-017-0657-y

Keywords

PACS numbers

Navigation