Skip to main content
Log in

Constructing backbone network by using tinker algorithm

Frontiers of Physics Aims and scope Submit manuscript

Abstract

Revealing how a biological network is organized to realize its function is one of the main topics in systems biology. The functional backbone network, defined as the primary structure of the biological network, is of great importance in maintaining the main function of the biological network. We propose a new algorithm, the tinker algorithm, to determine this core structure and apply it in the cell-cycle system. With this algorithm, the backbone network of the cell-cycle network can be determined accurately and efficiently in various models such as the Boolean model, stochastic model, and ordinary differential equation model. Results show that our algorithm is more efficient than that used in the previous research. We hope this method can be put into practical use in relevant future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. A. Kauffman, The Origins of Order: Self-organization and Selection in Evolution, New York: Oxford University Press, 1993

    Google Scholar 

  2. U. Alon, An Introduction to System Biology: Design Principles of Biological Circuits, Boca Raton: Chapman & Hall, 2006

    Book  MATH  Google Scholar 

  3. I. Rigoutsos and G. Stephanopoulos, Systems Biology: Networks, Models, and Applications, New York: Oxford University Press, 2007

    Google Scholar 

  4. X. F. Pang, Influence of structure disorders and temperatures of systems on the bio-energy transport in protein molecules (II), Front. Phys. 3(4), 457 (2008)

    Article  MathSciNet  Google Scholar 

  5. D. T. Gillespie, A general method for numerically simulating the stochastic time evolution of coupled chemical reactions, J. Comput. Phys. 22(4), 403 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  6. H. de Jong, Modeling and simulation of genetic regulatory systems: A literature review, J. Comput. Biol. 9(1), 67 (2002)

    Article  MathSciNet  Google Scholar 

  7. X. Cai and Z. M. Yuan, Stochastic modeling and simulation of the p53-MDM2/MDMX loop, J. Comput. Biol. 16(7), 917 (2009)

    Article  Google Scholar 

  8. Y. P. Zhang, M. P. Qian, Q. Ouyang, M. H. Deng, F. T. Li, and C. Tang, Stochastic model of yeast cell-cycle network, Physica D 219(1), 35 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. K. C. Chen, A. Csikász-Nagy, B. Gyorffy, J. Val, B. Novak, and J. J. Tyson, Kinetic analysis of a molecular model of the budding yeast cell cycle, Mol. Biol. Cell 11(1), 369 (2000)

    Article  Google Scholar 

  10. B. Novak, Z. Pataki, A. Ciliberto, and J. J. Tyson, Mathematical model of the cell division cycle of fission yeast., Chaos 11(1), 277 (2001)

    Article  ADS  MATH  Google Scholar 

  11. J. J. Tyson, K. Chen, and B. Novak, Network dynamics and cell physiology, Nat. Rev. Mol. Cell Biol. 2(12), 908 (2001)

    Google Scholar 

  12. J. J. Tyson, K. C. Chen, and B. Novak, Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell, Curr. Opin. Cell Biol. 15(2), 221 (2003)

    Article  Google Scholar 

  13. A. Csikász-Nagy, Computational systems biology of the cell cycle, Brief. Bioinformatics 10(4), 424 (2009)

    Article  Google Scholar 

  14. S. A. Kauffman, Metabolic stability and epigenesis in randomly constructed genetic nets, J. Theor. Biol. 22(3), 437 (1969)

    Article  ADS  MathSciNet  Google Scholar 

  15. F. Li, T. Long, Y. Lu, Q. Ouyang, and C. Tang, The yeast cell-cycle network is robustly designed, Proc. Natl. Acad. Sci. USA 101(14), 4781 (2004)

    Article  ADS  Google Scholar 

  16. S. Bornholdt, Systems biology. Less is more in modeling large genetic networks, Science 310(5747), 449 (2005)

    Article  Google Scholar 

  17. G. Wang, C. Du, H. Chen, R. Simha, Y. Rong, Y. Xiao, and C. Zeng, Process-based network decomposition reveals backbone motif structure, Proc. Natl. Acad. Sci. USA 107(23), 10478 (2010)

    Article  ADS  Google Scholar 

  18. Q. Z. Xia, L. L. Liu, W. M. Ye, and G. Hu, Inference of gene regulatory networks with the strong-inhibition Boolean model, New J. Phys. 13(8), 083002 (2011)

    Article  ADS  Google Scholar 

  19. G. Wang, Y. Rong, H. Chen, C. Pearson, C. Du, R. Simha, and C. Zeng, Process-driven inference of biological network structure: Feasibility, minimality, and multiplicity, PLoS ONE 7(7), e40330 (2012)

    Article  ADS  Google Scholar 

  20. M. I. Davidich and S. Bornholdt, Boolean network model predicts cell cycle sequence of fission yeast, PLoS ONE 3(2), e1672 (2008)

    Article  ADS  Google Scholar 

  21. M. I. Davidich and S. Bornholdt, Boolean network model predicts knockout mutant phenotypes of fission yeast, PLoS ONE 8(9), e71786 (2013)

    Article  ADS  Google Scholar 

  22. H. Kitano, Biological robustness, Nat. Rev. Genet. 5(11), 826 (2004)

    Article  Google Scholar 

  23. J. Stelling, U. Sauer, Z. Szallasi, F. III. Doyle, and J. Doyle, Robustness of cellular functions, Cell 118(6), 675 (2004)

    Article  Google Scholar 

  24. A. Wagner, Robustness and Evolvability in Living Systems, Princeton Studies in Complexity, Princeton: Princeton University Press, 2005

    Google Scholar 

  25. G. M. Cooper, The Cell: A Molecular Approach, Chapter 14, Washington: ASM Press, 2000

    Google Scholar 

  26. M. Morohashi, A. E. Winn, M. T. Borisuk, H. Bolouri, J. Doyle, and H. Kitano, Robustness as a measure of plausibility in models of biochemical networks, J. Theor. Biol. 216(1), 19 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  27. U. de Lichtenberg, L. J. Jensen, A. Fausbøll, T. S. Jensen, P. Bork, and S. Brunak, Comparison of computational methods for the identification of cell cycleregulated genes, Bioinformatics 21(7), 1164 (2005)

    Article  Google Scholar 

  28. F. T. Li, M. Y. Hu, B. Zhao, H. Yan, B. Wu, and Q. Ouyang, A globally attractive cycle driven by sequential bifurcations containing ghost effects in a 3-node yeast cell cycle model, arXiv: 1312.5204 (2014)

    Google Scholar 

  29. X. M. Zhang, B. Shao, Y. L. Wu, and Q. Ouyang, A reverse engineering approach to optimize experiments for the construction of biological regulatory networks, PLoS ONE 8(9), e75931 (2013)

    Article  ADS  Google Scholar 

  30. L. Yang, Y. Meng, C. Bao, W. Liu, C. Ma, A. Li, Z. Xuan, G. Shan, and Y. Jia, Robustness and backbone motif of a cancer network regulated by miR-17-92 cluster during the G1/S transition, PLoS ONE 8(3), e57009 (2013)

    Article  ADS  Google Scholar 

  31. F. Jacob, Evolution and tinkering, Science 196(4295), 1161 (1977)

    Article  ADS  Google Scholar 

  32. U. Alon, Biological networks: The tinkerer as an engineer, Science 301(5641), 1866 (2003)

    Article  ADS  Google Scholar 

  33. U. Alon, Network motifs: Theory and experimental approaches, Nat. Rev. Genet. 8(6), 450 (2007)

    Article  Google Scholar 

  34. R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon, Network motifs: Simple building blocks of complex networks., Science 298(5594), 824 (2002)

    Article  ADS  Google Scholar 

  35. C. Oosawa and M. A. Savageau, Effects of alternative connectivity on behavior of randomly constructed Boolean networks, Physica D 170(2), 143 (2002)

    Article  ADS  MATH  Google Scholar 

  36. S. Bornholdt and T. Rohlf, Topological evolution of dynamical networks: Global criticality from local dynamics, Phys. Rev. Lett. 84, 6114 (2000)

    Article  ADS  Google Scholar 

  37. M. C. Costanzo, M. E. Crawford, J. E. Hirschman, J. E. Kranz, P. Olsen, L. S. Robertson, M. S. Skrzypek, B. R. Braun, K. L. Hopkins, P. Kondu, C. Lengieza, J. E. Lew-Smith, M. Tillberg, and J. I. Garrels, YPD, PombePD and WormPD: model organism volumes of the BioKnowledge Library, an integrated resource for protein information, Nucleic Acids Res. 29(1), 75 (2001)

    Article  Google Scholar 

  38. T. I. Lee, N. J. Rinaldi, F. Robert, D. T. Odom, Z. Bar-Joseph, G. K. Gerber, N. M. Hannett, C. T. Harbison, C. M. Thompson, I. Simon, J. Zeitlinger, E. G. Jennings, H. L. Murray, D. B. Gordon, B. Ren, J. J. Wyrick, J. B. Tagne, T. L. Volkert, E. Fraenkel, D. K. Gifford, and R. A. Young, Transcriptional regulatory networks in Saccharomyces cerevisiae, Science 298(5594), 799 (2002)

    Article  ADS  Google Scholar 

  39. L. Mendoza and I. Xenarios, A method for the generation of standardized qualitative dynamical systems of regulatory networks, Theor. Biol. Med. Model 3(1), 13 (2006)

    Article  Google Scholar 

  40. B. Novak and J. J. Tyson, Modeling the control of DNA replication in fission yeast, Proc. Natl. Acad. Sci. USA 94(17), 9147 (1997)

    Article  ADS  Google Scholar 

  41. A. Sveiczer, A. Csikász-Nagy, B. Gyorffy, J. J. Tyson, and B. Novak, Modeling the fission yeast cell cycle: Quantized cycle times in wee1-cdc25Delta mutant cells, Proc. Natl. Acad. Sci. USA 97(14), 7865 (2000)

    Article  ADS  Google Scholar 

  42. B. Li, B. Shao, C. Yu, Q. Ouyang, and H. Wang, A mathematical model for cell size control in fission yeast, J. Theor. Biol. 264(3), 771 (2010)

    Article  ADS  MATH  Google Scholar 

  43. M. Davidich and S. Bornholdt, The transition from differential equations to Boolean networks: A case study in simplifying a regulatory network model, J. Theor. Biol. 255(3), 269 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Z. Y. Zhang, Z. Y. Li, G. Hu, and Z. G. Zheng, Exploring cores and skeletons in oscillatory gene regulatory networks by a functional weight approach, EPL 105(1), 18003 (2014)

    Article  ADS  Google Scholar 

  45. X. Liao, Q. Xia, Y. Qian, L. Zhang, G. Hu, and Y. Mi, Pattern formation in oscillatory complex networks consisting of excitable nodes, Phys Rev E 83, 056204 (2011)

    Article  ADS  Google Scholar 

  46. B. Novak, A. Csikász-Nagy, B. Gyorffy, K. Nasmyth, and J. J. Tyson, Model scenarios for evolution of the eukaryotic cell cycle, Philos. Trans. R. Soc. Lond. B 353(1378), 2063 (1998)

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported partially by the National Science Foundation of China (Grant Nos. 11475253, 11405263, and 11675112) and the Natural Science Foundation of Zhejiang Province (Grant No. LY16A050001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiwei He.

Additional information

Special Topic: Soft-Matter Physics and Complex Systems (Ed. Zhi-Gang Zheng). arXiv: 1612.05749.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Z., Zhan, M., Wang, J. et al. Constructing backbone network by using tinker algorithm. Front. Phys. 12, 120701 (2017). https://doi.org/10.1007/s11467-016-0645-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-016-0645-7

Keywords

Navigation