Skip to main content
Log in

DEM modelling of shear localization in a plane Couette shear test of granular materials

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

This paper presents a numerical study of shear localization in granular materials based on a discrete element method. The plane Couette shear test is proposed for this purpose. A numerical model is established to simulate the test. With the flexible side boundaries, it is demonstrated that the plane Couette shear state can be achieved within a granular sample of limited length, and a shear band parallel to the shear direction can be obtained. Numerical results are also presented to show the formation and the development of the shear band. A homogenization procedure is employed for presenting the variation of the field variables such as stress components, the couple stress, the void ratio and the grain rotation. The evolution and the spatial distribution of these quantities are qualitatively in accordance with the Cosserat continuum model predictions. The numerical results also indicate that the Cosserat effect plays a vital role in shear localization zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Andereck CD, Liu SS, Swinney HL (1986) Flow regimes in a circular Couette system with independently rotating cylinders. J Fluid Mech 164:155–183

    Article  Google Scholar 

  2. Bardet JP, Proubet J (1991) A numerical investigation of the structure of persistent shear bands in granular media. Geotechnique 41(4):599–613

    Article  Google Scholar 

  3. Bogdanova-Bontcheva N, Lippmann H (1975) Rotationssymmetrisches ebenes Fliessen eines granularen Modellmaterials. Acta Mech 21:93–113

    Article  Google Scholar 

  4. Calvetti F, Combe G, Lanier J (1997) Experimental micromechanical analysis of a 2D granular material: relation between structure evolution and loading path. Mech Cohes Frict Mater 2(2):121–163

    Article  Google Scholar 

  5. Conway SL, Shinbrot T, Glasser BJ (2004) A Taylor vortex analogy in granular flows. Nature 431:433–437

    Article  Google Scholar 

  6. Cundall PA, Strack ODL (1979) A discrete numerical model for granular assemblies. Géotechnique 29:47–65

    Article  Google Scholar 

  7. D’addetta GA, Ramm E, Diebels S, Ehlers W (2004) A particle centre based homogenization strategy for granular assemblies. Eng Comput 21(2/3/4):360–383

    Article  MATH  Google Scholar 

  8. de Borst R (1993) A generalization of J2-flow theory for polar continua. Comput Meth Appl Mech Eng 103:347–362

    Article  MATH  Google Scholar 

  9. Desrues J, Chambon R, Mokni M, Mazerolle F (1996) Void ratio evolution inside shear bands in triaxial sand specimens studied by computer tomography. Geotechnique 46(3):529–546

    Article  Google Scholar 

  10. Dietsche A, Steinmann P, Willam K (1993) Micropolar elastoplasticity and its role in localization. Int J Plast 9:813–831

    Article  MATH  Google Scholar 

  11. Ehlers W, Volk W (1998) On theoretical and numerical methods in the theory of porous media based on polar and nonpolar elasto-plastic solid materials. Int J Solids Struct 35:4597–4617

    Article  MATH  Google Scholar 

  12. Ehlers W, Ramm E, Diebels S, D’addetta GA (2003) From particle ensembles to Cosserat continua: homogenization of contact forces towards stresses and couple stresses. Int J Solids Struct 40(24):6681–6702

    Article  MATH  MathSciNet  Google Scholar 

  13. Huang W, Nübel K, Bauer E (2002) Polar extension of a hypoplastic model for granular materials with shear localization. Mech Mater 34:563–576

    Article  Google Scholar 

  14. Itasca Consulting Group (2004) PFC2D user’s manual (version 3.1). Itasca Consulting Group Inc., Minneapolis

    Google Scholar 

  15. Liu X, Papon A, Mühlhaus H-B (2012) Numerical study of structural evolution in shear band. Philos Mag 92(28–30):3501–3519

    Article  Google Scholar 

  16. Mühlhaus H-B (1986) Scherfugenanalyse bei granularem material in Rahmen der Cosserat-Theorie. Ing Arch 56:389–399

    Article  Google Scholar 

  17. Mühlhaus H-B, Vardoulakis I (1987) The thickness of shear bands in granular materials. Géotechnique 37:271–283

    Article  Google Scholar 

  18. Oda M, Iwashita K (2000) Study on couple stress and shear band development in granular media based on numerical simulation analysis. Int J Eng Sci 38:1713–1740

    Article  Google Scholar 

  19. Oda M, Kazama H (1998) Microstructure of shear bands and its relation to the mechanisms of dilatancy and failure of dense granular soils. Geotechnique 48(4):465–481

    Article  Google Scholar 

  20. Oda M, Konishi J, Nemat-Nasser S (1982) Experimental micromechanical evaluation of strength of granular materials: effect of particle rolling. Mech Mater 1:267–283

    Article  Google Scholar 

  21. Pasternak E, Mühlhaus H-B (2005) Generalised homogenization procedures for granular materials. J Eng Math 52(1–3):199–229

    Article  MATH  Google Scholar 

  22. Rechenmacher A, Abedi S, Chupin O (2010) Evolution of force chains in shear bands in sands. Geotechnique 60(5):343–351

    Article  Google Scholar 

  23. Roscoe KH (1970) The influence of strains in soil mechanics, 10th Rankine lecture. Géotechnique 20(2):129–170

    Article  Google Scholar 

  24. Rudnicki JW, Rice JR (1975) Conditions for the localization of deformation in pressure-sensitive dilatant materials. J Mech Phys Solids 23(6):371–394

    Article  Google Scholar 

  25. Tejchman J, Bauer E (1996) Numerical simulation of shear band formation with a polar hypoplastic constitutive model. Comput Geotech 19(3):221–244

    Article  Google Scholar 

  26. Utter B, Beringer RP (2004) Self-diffusion in dense granular shear flow. Phys Rev E 69:031308

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge gratefully the financial support to this work by China National Science Funding (No. 11172088), China 111 Project (No. B13024), as well as the Australian Research Council Centre of Excellence for Geotechnical Science and Engineering.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenxiong Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, W., Huang, L., Sheng, D. et al. DEM modelling of shear localization in a plane Couette shear test of granular materials. Acta Geotech. 10, 389–397 (2015). https://doi.org/10.1007/s11440-014-0348-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-014-0348-6

Keywords

Navigation