Skip to main content
Log in

Feasibility of a soft biological improvement of natural soils used in compacted linear earth construction

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

Increasing demand for infrastructures requires innovative, cheap and environmental sustainable practices in construction. The soils which are available on site for linear embankments often need to be improved to satisfy the necessary performance and strength requirements. A bio-improvement is evaluated here, for use in compacted earth construction. To the aim of sustainability and cost reduction, a soft technique was chosen by the industrial party, which consisted in adding bacteria to a superficial soil retrieved in situ, and letting them precipitate calcium carbonate with the aid of the nutrients available in the organic matter of the soil and in the compaction water. The effects of the soft biological treatment on silty clayey sand were studied systematically in a comprehensive laboratory investigation, focused on the properties mostly affecting the performance of earth constructions: compaction energy, water retention, hydraulic conductivity, small-strain shear stiffness, collapse potential and shear strength. Mercury intrusion porosimetry tests and scanning electron microscopy were performed to help in providing a comprehensive picture of the consequences of the soft biological treatment on the natural soil. Lack in artificial nutrients reduces the efficiency of the biological treatment with respect to other cases reported in the literature. Nonetheless, organogenic aggregates and bonds are created during mixing and ageing, as detected from small-stiffness measurement during the curing time lapse. The bio-cemented bonds are mostly broken during compaction, while the aggregated structure remains, and the fine fraction generated by broken bonds ends in acting as filler of some inter-grain and inter-aggregate porosity. Eventually, the effects of the adopted technique on the hydro-mechanical behaviour of the compacted soil can be described in a coherent picture as the result of bio-filling of an aggregated compacted soil fabric.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Al-Thawadi S (2008) High strength in situ biocementation of soil by precipitating locally isolated ureolytic bacteria. PhD Thesis, Murdoch University

  2. Anderson DG, Stokoe KH (1978) Shear modulus: a time dependent soil property. Dynamic Geotechnical Testing, ASTM STP 654-EB, Philadelphia, pp 66–90. doi:10.1520/STP35672S

  3. Arroyo M, Pineda JA, Romero E (2010) Shear wave measurements using bender elements in argillaceous rocks. Geotech Test J 33(6):488–498. doi:10.1520/GTJ102872

    Google Scholar 

  4. Bang SS, Lippert JJ, Yerra U, Mulukutla S, Ramakrishnan V (2010) Microbial calcite, a bio-based smart nanomaterial in concrete remediation. Int J Smart Nano Mater 1(1):28–39. doi:10.1080/19475411003593451

    Article  Google Scholar 

  5. Barrett EP, Joyner LG, Halenda PP (1951) The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J Am Chem Soc 73(1):373–380. doi:10.1021/ja01145a126

    Article  Google Scholar 

  6. Boquet E, Boronat A, Ramos Cormenzana A (1973) Production of calcite (calcium carbonate) crystals by soil bacteria is a general phenomenon. Nature 246:527–529. doi:10.1038/246527a0

    Article  Google Scholar 

  7. Burbank MB, Weaver TJ, Green TL, Williams B, Crawford RL (2011) Precipitation of calcite by indigenous microorganisms to strengthen liquefiable soils. Geomicrobiol J 28(4):301–312. doi:10.1080/01490451.2010.499929

    Article  Google Scholar 

  8. Castanier S, Le Métayer-Levrel G, Perthuisot J-P (1999) Ca-carbonates precipitation and limestone genesis—the microbiogeologist point of view. Sediment Geol 126(1–4):9–23. doi:10.1016/S0037-0738(99)00028-7

    Google Scholar 

  9. Chou C, Seagren EA, Aydilek AH, Lai M (2011) Biocalcification of sand through ureolysis. J Geotech Geoenviron Eng 137(12):1179–1189. doi:10.1061/(ASCE)GT.1943-5606.0000532

    Article  Google Scholar 

  10. De Muynck W, De Belie N, Verstraete W (2010) Microbial carbonate precipitation in construction materials: a review. Ecol Eng 36(2):118–136. doi:10.1016/j.ecoleng.2009.02.006

    Article  Google Scholar 

  11. DeJong JT, Fritzges MB, Nüsslein K (2006) Microbially induced cementation to control sand response to undrained shear. J Geotech Geoenviron Eng 132(11):1381–1392. doi:10.1061/(ASCE)1090-0241(2006)132:11(1381)

    Article  Google Scholar 

  12. DeJong JT, Mortensen BM, Martinez BC, Nelson DC (2010) Bio-mediated soil improvement. Ecol Eng 36(2):197–210. doi:10.1016/j.ecoleng.2008.12.029

    Article  Google Scholar 

  13. Dennis ML, Turner JP (1998) Hydraulic conductivity of compacted soil treated with biofilm. J Geotech Geoenviron Eng 124(2):120–127. doi:10.1061/(ASCE)1090-0241(1998)124:2(120)

    Article  Google Scholar 

  14. Dick J, De Windt W, De Graef B, Saveyn H, Van Der Meeren P, De Belie N, Verstraete W (2006) Bio-deposition of a calcium carbonate layer on degraded limestone by Bacillus species. Biodegradation 17(4):357–367. doi:10.1007/s10532-005-9006-x

    Article  Google Scholar 

  15. Ferris FG, Stehmeier LG, Kantzas A, Mourits FM (1996) Bacteriogenic mineral plugging. J Can Pet Technol 35(8):56–61. doi:10.2118/96-08-06

    Article  Google Scholar 

  16. Fujita Y, Ferris FG, Lawson RD, Colwell FS, Smith RW (2000) Calcium carbonate precipitation by ureolytic subsurface bacteria. Geomicrobiol J 17(4):305–318. doi:10.1080/782198884

    Article  Google Scholar 

  17. Fujita Y, Redden GD, Ingram JC, Cortez MM, Ferris FG, Smith RW (2004) Strontium incorporation into calcite generated by bacterial ureolysis. Geochim Cosmochim Acta 68(15):3261–3270. doi:10.1016/j.gca.2003.12.018

    Article  Google Scholar 

  18. Fujita Y, Taylor JL, Gresham TLT, Delwiche ME, Colwell FS, Mcling TL, Petzke LM, Smith RW (2008) Stimulation of microbial urea hydrolysis in groundwater to enhance calcite precipitation. Environ Sci Technol 42(8):3025–3032. doi:10.1021/es702643g

    Article  Google Scholar 

  19. Fujita Y, Taylor JL, Wendt LM, Reed DW, Smith RW (2010) Evaluating the potential of native ureolytic microbes to remediate a 90Sr contaminated environment. Environ Sci Technol 44(19):7652–7658. doi:10.1021/es101752p

    Article  Google Scholar 

  20. Gollapudi UK, Knutson CL, Bang SS, Islam MR (1995) A new method for controlling leaching through permeable channels. Chemosphere 30(4):695–705. doi:10.1016/0045-6535(94)00435-W

    Article  Google Scholar 

  21. Gray D, Sotir RB (1996) Biothechnical and soil bioengineering slope stabilization. A practical guide for erosion control. Wiley, New York

    Google Scholar 

  22. Hamdan N, Kavazanjian Jr E, Rittmann B, Karatas I (2011) Carbonate mineral precipitation for soil improvement through microbial denitrification. Geo-Frontiers 2011: Advances in Geotechnical Engineering. Dallas, Texas, United States. ASCE Geotechnical Special Publication GSP 211: 3925–3934. doi:10.1061/41165(397)401

  23. Hammes F, Verstraete W (2002) Key roles of pH and calcium metabolism in microbial carbonate precipitation. Rev Environ Sci Biotechnol 1(1):3–7. doi:10.1023/A:1015135629155

    Article  Google Scholar 

  24. Hammes F, Seka A, De Knijf S, Verstraete W (2003) A novel approach to calcium removal from calcium-rich industrial wastewater. Water Res 37(3):699–704. doi:10.1016/S0043-1354(02)00308-1

    Article  Google Scholar 

  25. Harkes MP, van Paassen LA, Booster JL, Whiffin VS, van Loosdrecht MCM (2010) Fixation and distribution of bacterial activity in sand to induce carbonate precipitation for ground reinforcement. Ecol Eng 36(2):112–117. doi:10.1016/j.ecoleng.2009.01.004

    Article  Google Scholar 

  26. Ismail MA, Joer HA, Randolph MF, Meritt A (2002) Cementation of porous materials using calcite. Géotechnique 52:313–324

    Article  Google Scholar 

  27. Ivanov V, Chu J (2008) Applications of microorganisms to geotechnical engineering for bioclogging and biocementation of soil in situ. Rev Environ Sci BioTechnol 7(2):139–153. doi:10.1007/s11157-007-9126-3

    Article  Google Scholar 

  28. Jimenez-Lopez C, Rodriguez-Navarro C, Piñar G, Carrillo-Rosúa FJ, Rodriguez-Gallego M, Gonzalez-Muñoz MT (2007) Consolidation of degraded ornamental porous limestone stone by calcium carbonate precipitation induced by the microbiota inhabiting the stone. Chemosphere 68(10):1929–1936. doi:10.1016/j.chemosphere.2007.02.044

    Article  Google Scholar 

  29. Latil MN, van der Zon W, Lehnen C, Ineke E, Marcelis F, van Eijden J, Baaijens T, Baaijens T, Bol G (2008) Environmental friendly technology for biological sand consolidation of oil and gas wellbore. Proceedings of first international BioGeoCivil Engineering conference (BGCE 2008). Delft, The Netherlands

  30. Li J, Hu M, Du J, Wang Z, Zhang Y (2011) Cultivation and acclimation of anaerobic granule sludge for trichloroethylene (TCE) degradation. Proceedings of 5th international conference on bioinformatics and biomedical engineering, iCBBE 2011, Wuhan 1–3. doi:10.1109/icbbe.2011.5781140

  31. Manning DAC (2008) Biological enhancement of soil carbonate precipitation: passive removal of atmospheric CO2. Mineral Mag 72(2):639–649. doi:10.1180/minmag.2008.072.2.639

    Article  Google Scholar 

  32. Martinez BC, DeJong JT (2009) Bio-mediated soil improvement: Load transfer mechanisms at the micro- and macro- scales. GeoFlorida 2009: Advances in Ground Improvement: Research to Practice in the United States and China. Orlando, Florida, United States. ASCE Geotechnical Special Publication GSP 188 242–251. doi:10.1061/41025(338)26

  33. Mitchell JK, Santamarina JC (2005) Biological considerations in geotechnical engineering. J Geotech Geoenviron Eng 131(10):1222–1233. doi:10.1061/(ASCE)1090-0241(2005)131:10(1222)

    Article  Google Scholar 

  34. Morales L, Romero E, Garzón E (2009) BIOLIN: Biotecnología de Obras Lineales. Project Report (in Spanish), Universidad de Almería, Spain

    Google Scholar 

  35. Morales L, Garzón E, Romero E, Jommi C (2011) Effects of a microbiological compound for the stabilisation of compacted soils on their microstructure and hydro-mechanical behaviour. Proceedings of 5th international conference on unsaturated soils. Barcelona, Spain. Unsaturated Soils, CRC Press 1:573–578. doi:10.1201/b10526-86

  36. Morales L, Romero E, Pineda JA, Garzón E, Giménez A (2012) Ageing effects on the stiffness behaviour of a microbiologically treated and compacted soil. Unsaturated Soils Res Appl 1:371–376. doi:10.1007/978-3-642-31116-1_50

    Article  Google Scholar 

  37. Mortensen BM, Dejong JT (2011) Strength and stiffness of MICP treated sand subjected to various stress paths. Geo-Frontiers 2011: Advances in Geotechnical Engineering. Dallas, Texas, United States. ASCE Geotechnical Special Publication GSP 211: 4012–4020. doi:10.1061/41165(397)410

  38. Nemati M, Voordouw G (2003) Modification of porous media permeability, using calcium carbonate produced enzymatically in situ. Enzyme Microb Technol 33(5):635–642. doi:10.1016/S0141-0229(03)00191-1

    Article  Google Scholar 

  39. Ozdogan A (2010) A study on the triaxial shear behavior and microstructure of biologically treated sand specimens. PhD Thesis, University of Delaware

  40. Phadnis HS, Santamarina JC (2011) Bacteria in sediments: pore size effects. Géotechnique Lett 1:91–93. doi:10.1680/geolett.11.00008

    Article  Google Scholar 

  41. Pineda JA (2012) Swelling and degradation of argillaceous rocks induced by relative humidity effects: an experimental study. PhD Thesis, Universitat Politècnica de Catalunya, Spain

  42. Qabany AA, Soga K, Santamarina C (2012) Factors affecting efficiency of microbially induced calcite precipitation. J Geotech Geoenviron Eng 138(8):992–1001. doi:10.1061/(ASCE)GT.1943-5606.0000666

    Article  Google Scholar 

  43. Ramachandran SK, Ramakrishnan V, Bang SS (2001) Remediation of concrete using micro-organisms. ACI Mater J 98(1):3–9. doi:10.14359/10154

    Google Scholar 

  44. Rebata-Landa V, Santamarina JC (2006) Mechanical limits to microbial activity in deep sediments. Geochem Geophys Geosyst 7:Q11006. doi:10.1029/2006GC001355

    Article  Google Scholar 

  45. Renforth P, Manning DAC, Lopez-Capel E (2009) Carbonate precipitation in artificial soils as a sink for atmospheric carbon dioxide. Appl Geochem 24(9):1757–1764. doi:10.1016/j.apgeochem.2009.05.005

    Article  Google Scholar 

  46. Rodriguez-Navarro C, Cazalla O, Elert K, Sebastian E (2002) Liesegang pattern development in carbonating traditional lime mortars. Proc R Soc Lond A 458(2025):2261–2273. doi:10.1098/rspa.2002.0975

    Article  Google Scholar 

  47. Romero E, Della Vecchia G, Jommi C (2011) An insight into the water retention properties of compacted clayey soils. Géotechnique 61(4):313–328. doi:10.1680/geot.2011.61.4.313

    Article  Google Scholar 

  48. Stabnikov V, Naeimi M, Ivanov V, Chu J (2011) Formation of water-impermeable crust on sand surface using biocement. Cem Concr Res 41(11):1143–1149. doi:10.1016/j.cemconres.2011.06.017

    Article  Google Scholar 

  49. Stocks-Fischer S, Galinat JK, Bang SS (1999) Microbiological precipitation of CaCO3. Soil Biol Biochem 31(11):1563–1571. doi:10.1016/S0038-0717(99)00082-6

    Article  Google Scholar 

  50. Tiano P, Biagiotti L, Mastromei G (1999) Bacterial bio-mediated calcite precipitation for monumental stones conservation: methods of evaluation. J Microbiol Methods 36(1–2):139–145. doi:10.1016/S0167-7012(99)00019-6

    Article  Google Scholar 

  51. van Paassen LA (2009) Biogrout, ground improvement by microbially induced carbonate precipitation. PhD Thesis, Delft University of Technology

  52. van Paassen LA (2011) Bio-mediated ground improvement: From laboratory experiment to pilot applications. Geo-Frontiers 2011: Advances in Geotechnical Engineering. Dallas, Texas, United States. ASCE Geotechnical Special Publication GSP 211: 4099–4108. doi:10.1061/41165(397)419

  53. van Paassen LA, Daza CM, Staal M, Sorokin DY, van der Zon W, van Loosdrecht MCM (2010) Potential soil reinforcement by biological denitrification. Ecol Eng 36(2):168–175. doi:10.1016/j.ecoleng.2009.03.026

    Article  Google Scholar 

  54. Warren LA, Maurice PA, Parmar N, Ferris GF (2001) Microbially mediated calcium carbonate precipitation: implications for Interpreting calcite precipitation and for solid-phase capture of inorganic contaminants. Geomicrobiol J 18(1):93–115. doi:10.1080/01490450151079833

    Article  Google Scholar 

  55. Weiner S, Addadi L (1997) Design strategies in mineralized biological materials. J Mater Chem 7:689–702. doi:10.1039/A604512J

    Article  Google Scholar 

  56. Whiffin VS, van Paassen LA, Harkes MP (2007) Microbial carbonate precipitation as a soil improvement technique. Geomicrobiol J 24(5):417–423. doi:10.1080/01490450701436505

    Article  Google Scholar 

  57. Yang P, Wendisch M, Bi L, Kattawar G, Mishchenko M, Hu Y (2011) Dependence of extinction cross-section on incident polarization state and particle orientation. J Quant Spectrosc Radiat Transfer 112(2):2035–2039. doi:10.1016/j.jqsrt.2011.04.012

    Article  Google Scholar 

Download references

Acknowledgments

The initial part of the work was performed within the framework of BIOLIN project ‘Biotecnología de Obras Lineales’ between ACCIONA Infraestructuras and the University of Almería. The results presented herein are those of the authors only and do not, necessarily, reflect the views of the company (ACCIONA Infraestructuras). The first author wishes to acknowledge the University of Almería for providing research grant. Special thanks to the Department of Applied Biology (University of Almería) for assisting in the microbiological analysis. The authors acknowledge the contribution of Dr. Jubert Pineda in the experimental set-up and interpretation of the bender elements results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrique Romero.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morales, L., Romero, E., Jommi, C. et al. Feasibility of a soft biological improvement of natural soils used in compacted linear earth construction. Acta Geotech. 10, 157–171 (2015). https://doi.org/10.1007/s11440-014-0344-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-014-0344-x

Keywords

Navigation