Skip to main content
Log in

Two-post-Newtonian approximation of the scalar-tensor theory with an intermediate-range force for general matter

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Some future space missions measure distances of laser links and angles with unprecedented precision, allowing us to test theories of gravity up to the two-post-Newtonian (2PN) order. Besides, investigation of an intermediate-range force has been of considerable interests in gravitational experiments. Inspired by these ideas, within the framework of the scalar-tensor theory with an intermediate-range force, its 2PN approximation is obtained with Chandrasekhar’s approach. It includes the 2PN metric and equations of motion for general matter without specific equation of state. The conserved quantities to the 2PN order are isolated with the aid of the energy-momentum complex. We also discuss the prospect of testing and distinguishing the intermediate-range force with the orbital motions of celestial bodies and spacecrafts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ciufolini I, Pavlis E C. A confirmation of the general relativistic prediction of the Lense-Thirring effect. Nature, 2004, 431: 958–960

    Article  ADS  Google Scholar 

  2. Murphy T W, Adelberger E G, Battat J B R, et al. The Apache point observatory lunar laser-ranging operation: Instrument description and first detections. Publ Astron Soc Pac, 2008, 120: 20–37

    Article  ADS  Google Scholar 

  3. Fomalont E, Kopeikin S, Lanyi G, et al. Progress in measurements of the gravitational bending of radio waves using the VLBA. Astrophys J, 2009, 699: 1395–1402

    Article  ADS  Google Scholar 

  4. Turyshev S G, Shao M, Nordtvedt K Jr. New concept for testing general relativity: The Laser Astrometric Test Of Relativity (LATOR) mission. Astron Nachr, 2004, 325: 267–277

    Article  ADS  MATH  Google Scholar 

  5. Turyshev S G, Shao M, Nordtvedt K Jr. The laser astrometric test of relativity mission. Class Quant Grav, 2004, 21: 2773–2799

    Article  ADS  MATH  Google Scholar 

  6. Turyshev S G, Farr W, Folkner W M, et al. Advancing tests of relativistic gravity via laser ranging to Phobos. Exp Astron, 2010, 28: 209–249

    Article  ADS  Google Scholar 

  7. Turyshev S G, Shao M, Girerd A, et al. A search for new physics with the Beacon Mission. Int J Mod Phys D, 2009, 18: 1025–1038

    Article  ADS  MATH  Google Scholar 

  8. Fujii Y, Maeda K. The Scalar-Tensor Theory of Gravitation. Cambridge: Cambridge Univesity Press, 2005. 2–37

    Google Scholar 

  9. Deng X M, Xie Y, Huang T Y. A modified scalar-tensor-vector gravity theory and the constraint on its parameters. Phys Rev D, 2009, 79: 044014

    Article  ADS  Google Scholar 

  10. Deng X. Constraints on a scalar-tensor theory with an intermediate-range force by binary pulsars. Sci China-Phys Mech Astron, 2011, 54: 2071–2077

    Article  ADS  Google Scholar 

  11. Xie Y, Ni W T, Dong P, et al. Second post-Newtonian approximation of scalar-tensor theory of gravity. Adv Space Res, 2009, 43: 171–180

    Article  ADS  Google Scholar 

  12. Blanchet L, Damour T. Post-Newtonian generation of gravitational waves. Ann Inst Henri Poincaré, 1989, 50: 377–408

    ADS  MATH  MathSciNet  Google Scholar 

  13. Damour T, Esposito-Farèse G. Tensor-multi-scalar theories of gravitation. Classical Quantum Gravity, 1992, 9: 2093–2176

    Article  ADS  MATH  MathSciNet  Google Scholar 

  14. Damour T, Esposito-Farèse G. Tensor-scalar gravity and binary-pulsar experiments. Phys Rev D, 1996, 53: 5541–5578

    Article  ADS  MathSciNet  Google Scholar 

  15. Misner C W, Thorne K S, Wheeler J A. Gravitation. Freeman: San Francisco Press, 1973. 8–10

    Google Scholar 

  16. Chandrasekhar S. The post-Newtonian equations of hydrodynamics in general relativity. Astrophys J, 1965, 142: 1488–1512

    Article  ADS  MathSciNet  Google Scholar 

  17. Kopeikin S, Vlasov I. Parametrized post-Newtonian theory of reference frames, multipolar expansions and equations of motion in the N-body problem. Phys Rep, 2004, 400: 209–318

    Article  ADS  MathSciNet  Google Scholar 

  18. Nordtvedt K J, Will C M. Conservation laws and preferred frames in relativistive gravity. II. Experimental evidence to rule out preferred-frame theories of gravity. Astrophys J, 1972, 177: 775–792

    MathSciNet  Google Scholar 

  19. Will C M, Nordtvedt K J. Conservation laws and preferred frames in relativistive gravity. I. Preferred-frame theories and an extended PPN formalism. Astrophys J, 1972, 177: 757–774

    MathSciNet  Google Scholar 

  20. Nutku Y. The energy-momentum complex in the Brans-Dicke theory. Astrophys J, 1969, 158: 991–996

    Article  ADS  MathSciNet  Google Scholar 

  21. Chandrasekhar S. The second post-Newtonian equations of hydrodynamics in general relativity. Astrophys J, 1969, 158: 55–79

    Article  ADS  MathSciNet  Google Scholar 

  22. Deng X, Xie Y. Yukawa effects on the clock onboard a drag-free satellite. Mon Not R Astron Soc, 2013, 431: 3236–3239

    Article  ADS  Google Scholar 

  23. Xie Y, Deng X. On the (im)possibility of testing new physics in exoplanets using transit timing variations: Deviation from inverse-square law of gravity. Mon Not R Astron Soc, 2014, 438: 1832–1838

    Article  ADS  Google Scholar 

  24. Fischbach E, Sudarsky D, Szafer A, et al. Reanalysis of the Eötvös experiment. Phys Rev Lett, 1986, 56: 3–6

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XueMei Deng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, X. Two-post-Newtonian approximation of the scalar-tensor theory with an intermediate-range force for general matter. Sci. China Phys. Mech. Astron. 58, 1–8 (2015). https://doi.org/10.1007/s11433-014-5589-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-014-5589-8

Keywords

Navigation