Skip to main content
Log in

How much oxygen is needed for acetylene to be consumed in soil?

  • SOILS, SEC 1 • SOIL ORGANIC MATTER DYNAMICS AND NUTRIENT CYCLING • RESEARCH ARTICLE
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

Acetylene (C2H2) is employed for the quantification of important biological processes such as nitrogen fixation, nitrous oxide reduction, ammonium and methane oxidation, and methanogenesis. Although acetylene is not a natural product, the ability of bacteria to grow on C2H2 is a phenomenon common to soils and sediments. Our experiment was designed to study the modification of CO2 production, O2 uptake and microbial biomass (Cmic) in soil in response to the consumption of added acetylene.

Materials and methods

Two soils (peat-muck and Eutric Cambisol) were incubated under well aerated (60% water holding capacity [WHC]) or flooded conditions, and enriched with C2H2 in the range 0.1–10 kPa (initially, 0.434–63.4 mmol C2H2 kg−1) at a constant temperature of 20°C. Gases were measured chromatographically, while Cmic was measured by the physiological SIR (substrate-induced respiration) method based on the initial response of microorganisms to glucose amendment. We used a simple calculation of net CO2, net O2 and net Cmic (as differences between amended and not amended soils) to estimate the contribution of C2H2 to the total respiration and microbial growth during the incubation.

Results and discussion

Peat-muck soil consumed more C2H2 than Cambisol (maximum 54.03 vs. 19.25 mmol kg−1, p < 0.001). Acetylene utilization was faster and larger in flooded than in wet soils (16.2 and 7.81 mmol kg−1, respectively, p < 0.05), and followed the tendency observed for Cmic. Depending on C2H2 enrichment, air–water conditions, and soil tested, both reduction and stimulation of measured activities were observed in response to acetylene consumption. Low C2H2 uptake, especially in Cambisol incubated at 60% WHC, resulted in the reduction of soil respiration and biomass (by 1–29%). Large C2H2 consumption in flooded soils stimulated CO2 production, O2 uptake and Cmic, even by 78%, 72% and 43%, respectively. Net CO2, net O2, and net Cmic were linearly positively related to the quantity of consumed C2H2 (p < 0.001).

Conclusions

Acetylene utilization was a combined effect of initial C2H2, soil properties, and air–water status. The amount of consumed C2H2 was the highest in flooded peat-muck soil enriched with 10 kPa, and lowest in Cambisol at 60% WHC with 0.1 kPa C2H2. Consumption of 1 mol acetylene induced production of 0.5 mol CO2, and uptake of 0.4 mol O2. Low acetylene consumption (<6 mmol kg−1) resulted in reduction of both soil respiration and microbial biomass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anderson JPE, Domsch KH (1978) A physiological method for the quantitative measurement of microbial biomass in soils. Soil Biol Biochem 10:215–221

    Article  CAS  Google Scholar 

  • Antić-Mladenović S, Rinklebe J, Frohne T, Stärk H-J, Wennrich R, Tomić Z, Ličina V (2011) Impact of controlled redox conditions on nickel in a serpentine soil. J Soils Sediments 11:406–415

    Article  Google Scholar 

  • Bauhus J, Paré D, Coté L (1998) Effects of tree species, stand age and soil type on soil microbial biomass and its activity in a southern boreal forest. Soil Biol Biochem 30:1077–1089

    Article  CAS  Google Scholar 

  • Belay N, Daniels L (1987) Production of ethane, ethylene, and acetylene from halogenated hydrocarbons by methanogenic bacteria. Appl Environ Microbiol 53:1604–1610

    CAS  Google Scholar 

  • Birch-Hirschfeld L (1932) Die Umsetzung von Acetylen durch Mycobacterium lacticola. Zbl Bakt II Natur 86:113–130

    Google Scholar 

  • Brouzes R, Knowles R (1971) Inhibition of growth of Clostridium pasteurianum by acetylene, implication for nitrogen fixation assay. Can J Microbiol 17:1483–1489

    Article  CAS  Google Scholar 

  • Brzezińska M (2006) Impact of treated wastewater on biological activity and accompanying processes in organic soils (field and model experiments) (in Polish, English summary). Acta Agrophy, Ser Monogr 131:7–164

    Google Scholar 

  • Brzezińska M, Stępniewska Z, Stępniewski W (1998) Soil oxygen status and dehydrogenase activity. Soil Biol Biochem 30:1783–1790

    Article  Google Scholar 

  • Brzezińska M, Sokołowska Z, Alekseeva T, Alekseev A, Hajnos M, Szarlip P (2011) Some characteristics of organic soils irrigated with municipal wastewater. Land Degrad Dev, doi:10.1002/ldr.1036

  • Chan ASK, Parkin TB (2000) Evaluation of potential inhibitors of methanogenesis and methane oxidation in a landfill cover soil. Soil Biol Biochem 32:1581–1590

    Article  CAS  Google Scholar 

  • Conrad R (1996) Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, N2O, and NO). Microbiol Rev 60:609–640

    CAS  Google Scholar 

  • Crounse JD, DeCarlo PF, Blake DR, Emmons LK, Campos TL, Apel EC, Clarke AD, Weinheimer AJ, McCabe DC, Yokelson RJ, Jimenez JL, Wennberg PO (2009) Biomass burning and urban air pollution over the Central Mexican Plateau. Atmos Chem Phys 9:4929–4944

    Article  CAS  Google Scholar 

  • Culbertson CW, Zehnder AJB, Oremland RS (1981) Anaerobic oxidation of acetylene by estuarine sediments and enrichment cultures. Appl Environ Microbiol 41:396–403

    CAS  Google Scholar 

  • Culbertson C, Strohmaier FE, Oremland RS (1988) Acetylene as a substrate in the development of primordial bacterial communities. Orig Life Evol Biosph 18:397–407

    Article  CAS  Google Scholar 

  • de Bont JAM, Peck MWP (1980) Metabolism of acetylene by Rhodococcus AI. Arch Microbiol 127:99–104

    Article  Google Scholar 

  • DFG–Priority Programme 1319 (2010) Biological transformations of hydrocarbons without oxygen: from the molecular to the global scale. First Meeting, 0810 March, 2010. Schloss Machern/Leipzig. Boll M, Meckenstock RU (org). http://www.helmholtz-muenchen.de/fileadmin/SPP1319/PDF/Abstractband_DFG_Tagung_2010__3_.pdf. Accessed 14 April 2011

  • Didriche K, Herman M (2010) A four-atom molecule at the forefront of spectroscopy, intramolecular dynamics and astrochemistry: acetylene. Chemi Phys Lett 496:1–7

    Article  CAS  Google Scholar 

  • Einsle O, Niessen H, Abt DJ, Seiffert G, Schink B, Huber R, Messerschmidt A, Kroneck PMH (2005) Crystallization and preliminary X-ray analysis of the tungsten-dependent acetylene hydratase from Pelobacter acetylenicus. Acta Crystallogr F61:299–301

    CAS  Google Scholar 

  • Flather DH, Beauchamp EG (1992) Inhibition of the fermentation process in soil by acetylene. Soil Biol Biochem 24:905–911

    Article  CAS  Google Scholar 

  • Franzluebbers AJ (1999) Microbial activity in response to water-filled pore space of variably eroded southern Piedmont soils. Appl Soil Ecol 11:91–101

    Article  Google Scholar 

  • Gejlsbjerg B, Andersen TT, Madsen T (2004) Mineralization of organic contaminants under aerobic and anaerobic conditions in sludgesoil mixtures. J Soils Sediments 4:30–36

    Article  CAS  Google Scholar 

  • Germon JC, Knowles R (1988) Metabolism of acetylene and acetaldehyde in Rhodococcus rhodochrous. Can J Microbiol 34:242–248

    Article  CAS  Google Scholar 

  • Gliński J, Stępniewski W (1985) Soil aeration and its role for plants. CRC, Boca Raton

    Google Scholar 

  • Goldman JD (1928) Conclusions from extended experiments with nitrous oxide, acetylene, ethylene oxygen anesthesias. Br J Anaesth 6:57–60

    Article  Google Scholar 

  • House AJ, Hyman MR (2010) Effects of gasoline components on MTBE and TBA cometabolism by Mycobacterium austroafricanum JOB5. Biodegradation 21:525–541

    Article  CAS  Google Scholar 

  • HPA, Compendium of Chemical Hazards, Acetylene (2009) Foxall K, Health Protection Agency, Version 1. http://www.hpa.org.uk/web/HPAwebFile/HPAweb_C/1246260034064. Accessed 29 April 2011

  • Inubushi K, Brookes PC, Jenkinson DS (1991) Soil microbial biomass C, N and ninhydrin-N in aerobic and anaerobic soils measured by the fumigationextraction method. Soil Biol Biochem 23:737–741

    Article  CAS  Google Scholar 

  • Inubushi K, Sugii H, Watanabe I, Wassmann R (2002) Evaluation of methane oxidation in rice plantsoil system. Nutr Cycl Agroecosyst 64:71–77

    Article  CAS  Google Scholar 

  • Inubushi K, Sakamoto K, Sawamoto T (2005) Properties of microbial biomass in acid soils and their turnover. Soil Sci Plant Nutr 51:605–608

    Article  CAS  Google Scholar 

  • Inubushi K, Cheng W, Mizuno T, Lou Y, Hasegawa T, Sakai H, Kobayashi K (2011) Microbial biomass carbon and methane oxidation influenced by rice cultivars and elevated CO2 in a Japanese paddy soil. European J Soil Sci 62:69–73

    Article  CAS  Google Scholar 

  • Kanakidou M, Bonsang B, Le Roulley JC, Lambert G, Martin D, Sennequier G (1988) Marine source of atmospheric acetylene. Nature 333:51–52

    Article  CAS  Google Scholar 

  • Kanner D, Bartha R (1979) Growth of Nocardia rhodochrous on acetylene gas. J Bacteriol 139:225–230

    CAS  Google Scholar 

  • Kanner D, Bartha R (1982) Metabolism of acetylene by Nocardia rhodochrous. J Bacteriol 150:989–992

    CAS  Google Scholar 

  • Kęsik T, Błażewicz-Woźniak M, Wach D (2010) Influence of conservation tillage in onion production on the soil organic matter content and soil aggregated formation. Int Agrophys 24:267–273

    Google Scholar 

  • Klemedtsson LK, Mosier AR (1994) Effect of long-term field exposure of soil to acetylene on nitrification, denitrification, and acetylene consumption. Biol Fertil Soils 18:42–48

    Article  CAS  Google Scholar 

  • Klemedtsson L, Hansson G, Mosier A (1990) The use of acetylene for the quantification of N2 and N2O production from biological processes in soil. In: Revsbech NP, Sørensen J (eds) Denitrification in soil and sediment. Plenum, New York, pp 167–180

    Google Scholar 

  • Liang X, Philp RP, Butler EC (2009) Kinetic and isotope analyses of tetrachloroethylene and trichloroethylene degradation by model Fe(II)-bearing minerals. Chemosphere 75:63–69

    Article  CAS  Google Scholar 

  • Liao R-Z, Yu J-G, Himo F (2010) Mechanism of tungsten-dependent acetylene hydratase from quantum chemical calculations. Proc Natl Acad Sci USA 107:22523–22527

    Article  CAS  Google Scholar 

  • Linn DM, Doran JW (1984) Effect of water-filled pore space on carbon dioxide and nitrous oxide production in tilled and nontilled soils. Soil Sci Soc Am J 48:1667–1672

    Google Scholar 

  • Mozharova NV, Kulachkova SA (2008) Specificity of soil functioning and formation on gas-bearing areas. J Soils Sediments 8:424–432

    Article  CAS  Google Scholar 

  • Oremland RS, Voytek MA (2008) Acetylene as fast food: implications for development of life on anoxic primordial earth and in the outer solar system. Astrobiology 8:45–58

    Article  CAS  Google Scholar 

  • Payne WJ, Grant MA (1982) Influence of acetylene on growth of sulfate-respiring bacteria. Appl Environ Microbiol 43:727–730

    CAS  Google Scholar 

  • Rinklebe J, Langer U (2010) Relationship between soil microbial biomass determined by SIR and PLFA analysis in floodplain soils. J Soils Sediments 10:4–8

    Article  CAS  Google Scholar 

  • Rosner BM, Schink B (1995) Purification and characterization of acetylene hydratase of Pelobacter acetylenicus, a tungsten ironsulfur protein. J Bacteriol 177:5767–5772

    CAS  Google Scholar 

  • Rosner BM, Rainey FA, Kroppenstedt RM, Schink B (1997) Acetylene degradation by new isolates of aerobic bacteria and comparison of acetylene hydratase enzymes. FEMS Microbiol Lett 148:175–180

    Article  CAS  Google Scholar 

  • Ryżak M, Bieganowski A (2010) Determination of particle size distribution of soil using laser diffraction—comparison with areometric method. Int Agrophys 24:177–181

    Google Scholar 

  • Schink B (1985) Fermentation of acetylene by an obligate anaerobe, Pelobacter acetylenicus sp. nov. Archiv Microbiol 142:295–301

    Article  CAS  Google Scholar 

  • Seiffert GB, Ullmann GM, Messerschmidt A, Schink B, Kroneck PMH, Einsle O (2007) Structure of the non-redox-active tungsten/[4Fe:4S] enzyme acetylene hydratase. PNAS 104:3073–3077

    Article  CAS  Google Scholar 

  • Selivanovskaya SY, Latypova VZ (2003) The use of bioassays for evaluating the toxicity of sewage sludge and sewage sludge-amended soil. J Soils Sediments 3:85–92

    Article  CAS  Google Scholar 

  • Serrano-Silva N, Luna-Guido M, Fernández-Luqueno F, Marsch R, Dendooven L (2011) Emission of greenhouse gases from an agricultural soil amended with urea: a laboratory study. Appl Soil Ecol 47:92–97

    Article  Google Scholar 

  • Siczek A, Lipiec J (2011) Soybean nodulation and nitrogen fixation in response to soil compaction and surface straw mulching. Soil Till Res 114:50–56

    Article  Google Scholar 

  • Singh KP, Malik A, Singh VK, Sinha S (2006) Multi-way data analysis of soils irrigated with wastewater–a case study. Chemometr Intell Lab Syst 83:1–12

    Article  CAS  Google Scholar 

  • Smith KA, Bremner JM, Tabatabai MA (1973) Sorption of gaseous atmospheric pollutants by soils. Soil Sci 116:313–319

    Article  CAS  Google Scholar 

  • Stępniewski W (2011) Aeration of soils and plants. In: Gliński J, Horabik J, Lipiec J (eds) Encyclopedia of agrophysics. Springer Science+Business Media, Dordrecht, pp 8–13

    Google Scholar 

  • Stępniewski W, Stępniewska Z, Bennicelli RP, Gliński J (2005) Oxygenology in outline. Institute of Agrophysics PAS, Lublin. ISBN 83-89969-00-9

    Google Scholar 

  • Tam TY, Mayfield CI, Inniss WE (1983) Aerobic acetylene utilization by stream sediment and isolated bacteria. Curr Microbiol 8:165–168

    Article  CAS  Google Scholar 

  • Terry RE, Duxbury JM (1985) Acetylene decomposition in soils. Soil Sci Soc Am J 49:90–94

    Article  CAS  Google Scholar 

  • Topp E, Germon J-C (1986) Acetylene metabolism and stimulation of denitrification in an agricultural soil. Appl Environ Microbiol 52:802–806

    CAS  Google Scholar 

  • Wang B, Shao M, Lu SH, Yuan B, Zhao Y, Wang M, Zhang SQ, Wu D (2010) Variation of ambient non-methane hydrocarbons in Beijing city in summer 2008. Atmos Chem Phys 10:5911–5923

    Article  CAS  Google Scholar 

  • Watanabe I, de Guzman MR (1980) Effect of nitrate on acetylene disappearance from anaerobic soil. Soil Biol Biochem 12:193–194

    Article  CAS  Google Scholar 

  • Włodarczyk T, Stępniewski W, Brzezińska M (2002) Dehydrogenase activity, redox potential, and emission of carbon dioxide and nitrous oxide from Cambisols under flooding conditions. Biol Fertil Soils 36:200–206

    Article  Google Scholar 

  • Wrage N, van Groenigen JW, Oenema O, Baggs EM (2005) A novel dual-isotope labelling method for distinguishing between soil sources of N2O. Rapid Commun Mass Spectrom 19:3298–3306

    Article  CAS  Google Scholar 

  • Xiao Y, Jacob DJ, Turquety S (2007) Atmospheric acetylene and its relationship with CO as an indicator of air massage. J Geophys Res 112:d12305

    Article  Google Scholar 

  • Xu XK, Inubushi K (2005) Mineralization of nitrogen and N2O production potentials in acid forest soils under controlled aerobic conditions. Soil Sci Plant Nutr 51:683–688

    Article  CAS  Google Scholar 

  • Xu XK, Inubushi K (2008) Measurement of ethylene and methane production in a temperate forest soil using inhibition of acetylene and carbon monoxide. Chin Sci Bull 53:1087–1093

    Article  CAS  Google Scholar 

  • Xu XK, Inubushi K (2009a) Ethylene oxidation, atmospheric methane consumption, and ammonium oxidation in temperate volcanic forest soils. Biol Fertil Soils 45:265–271

    Article  CAS  Google Scholar 

  • Xu XK, Inubushi K (2009b) Temperature effects on ethylene and methane production from temperate forest soils. Chin Sci Bull 54:1426–1433

    Article  CAS  Google Scholar 

  • Xu XK, Inubushi K, Sakamoto K (2006) Effect of vegetations and temperature on microbial biomass carbon and metabolic quotients of temperate volcanic forest soils. Geoderma 136:310–319

    Article  CAS  Google Scholar 

  • Zhang TY, Xu XK, Luo XK, Han L, Wang YH, Pan GX (2009) Effects of acetylene at low concentrations on nitrification, mineralization and microbial biomass nitrogen concentrations in forest soils. Chin Sci Bull 54:296–303

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Mr. Michael Tregenza (Institute of Agricultural Medicine, Lublin, Poland) for improving the text (English correction) of this report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Małgorzata Brzezińska.

Additional information

Responsible editor: Zucong Cai

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM1

(DOC 90 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brzezińska, M., Rafalski, P., Włodarczyk, T. et al. How much oxygen is needed for acetylene to be consumed in soil?. J Soils Sediments 11, 1142–1154 (2011). https://doi.org/10.1007/s11368-011-0419-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-011-0419-3

Keywords

Navigation