Skip to main content
Log in

Assessing the Ecotoxicity of Gold Mine Tailings Utilizing Earthworm and Microbial Assays

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Problems associated with mining are the disposal of wastes on tailing disposal facilities (TDFs). The aim of this study was to determine the ecotoxicity of gold mine tailings by using earthworm bioassays, earthworm biomarkers and enzymatic analyses. End points included changes in biomass, reproduction, lysosomal membrane stability, tissue metal concentrations, and selected enzymatic activities. Results indicated high concentrations of Ni in the material as well as bioaccumulation of lead and arsenic in the earthworm body tissue after exposure. Enzymatic activity was higher in revegetated tailings than in unrehabilitated tailings. It was concluded that TDF and surrounding areas have an acidic pH which affects earthworms and metal bioavailability. Soil enzymatic activities were a sensitive indicator of metal pollution in mining areas. Growth, reproduction and lysosomal membrane stability of earthworms have also been shown to be sensitive end points to assess the ecotoxic effects of gold TDF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akcil, A., & Koldas, S. (2006). Acid mine drainage (AMD): causes, treatment and case studies. Journal of Cleaner Production, 14, 1139–1145.

    Article  Google Scholar 

  • Alef, K., & Nannipieri, P. (1995). Methods in applied soil microbiology and biochemistry. New York: Academic Press.

  • Antunes, S. C., Pereira, R., Marques, S. M., Castro, B. B., & Gonçalves, F. (2011). Impaired microbial activity caused by metal pollution: a field study in a deactivated uranium mining area. The Science of the Total Environment, 410, 87–95.

    Article  Google Scholar 

  • Aon, M., Sarena, D. E., Burgos, J., & Cortassa, S. (2001). (Micro) biological, chemical and physical properties of soils subjected to conventional or no-till management: an assessment of their quality status. Soil and Tillage Research, 60, 173–186.

    Article  Google Scholar 

  • Barcan, V., & Kovnatsky, E. (1998). Soil surface geochemical anomaly around the copper-nickel metallurgical smelter. Water, Air, and Soil Pollution, 103, 197–218.

    Article  CAS  Google Scholar 

  • Bengtsson, G., Gunnarsson, T., & Rundgren, S. (1986). Effects of metal pollution on the earthworm Dendrobaena rubida (Sav.) in acidified soils. Water, Air, and Soil Pollution, 28, 361–383.

    CAS  Google Scholar 

  • Boudou, A., Maury-Brachet, R., Coquery, M., Durrieu, G., & Cossa, D. (2005). Synergic effect of gold mining and damming on mercury contamination in fish. Environmental Science & Technology, 39, 2448–2454.

    Article  CAS  Google Scholar 

  • Chakraborti, D., Rahman, M. M., Murrill, M., Das, R., Patil, S., Sarkar, A., Yendigeri, S., Ahmed, R., & Das, K. K. (2013). Environmental arsenic contamination and its health effects in a historic gold mining area of the Mangalur greenstone belt of Northeastern Karnataka, India. Journal of Hazardous Materials, 262, 1048–1055.

    Article  CAS  Google Scholar 

  • Chaperon, S., & Sauve, S. (2007). Toxicity interaction of metals (Ag, Cu, Hg, Zn) to urease and dehydrogenase activities in soils. Soil Biology and Biochemistry, 39, 2329–2338.

    Article  CAS  Google Scholar 

  • Chodak, M., Gołębiewski, M., Morawska-Płoskonka, J., Kuduk, K., & Niklińska, M. (2013). Diversity of microorganisms from forest soils differently polluted with heavy metals. Applied Soil Ecology, 64, 7–14.

    Article  Google Scholar 

  • Ciarkowska, K., Sołek-Podwika, K., & Wieczorek, J. (2014). Enzyme activity as an indicator of soil-rehabilitation processes at a zinc and lead ore mining and processing area. Journal of Environmental Management, 132, 250–256.

    Article  CAS  Google Scholar 

  • Cortes-Maramba, N., Reyes, J. P., Francisco-Rivera, A. T., Akagi, H., Sunio, R., & Panganiban, L. C. (2006). Health and environmental assessment of mercury exposure in a gold mining community in Western Mindanao, Philippines. Journal of Environmental Management, 81, 126–134.

    Article  CAS  Google Scholar 

  • Cortet, J., Vauflery, A. G.-D., Poinsot-Balaguer, N., Gomot, L., Texier, C., & Cluzeau, D. (1999). The use of invertebrate soil fauna in monitoring pollutant effects. European Journal of Soil Biology, 35, 115–134.

    Article  CAS  Google Scholar 

  • Criquet, S., Ferre, E., & Farnet, A. (2004). Annual dynamics of phosphatase activities in an evergreen oak litter: influence of biotic and abiotic factors. Soil Biology and Biochemistry, 36, 1111–1118.

    Article  CAS  Google Scholar 

  • Curry, J. P., Doherty, P., Purvis, G., & Schmidt, O. (2008). Relationships between earthworm populations and management intensity in cattle-grazed pastures in Ireland. Applied Soil Ecology, 39, 58–64.

    Article  Google Scholar 

  • Davis, R. (1981). Cyanide detoxication in the domestic fowl. In: Vennesland, B., Conn, E. E., Knowles, C. J., Westley, J. & Wissing, F (eds) Cyanide in biology. Academic Press, New York

  • Durrieu, G., Maury-Brachet, R., & Boudou, A. (2005). Goldmining and mercury contamination of the piscivorous fish Hoplias aimara in French Guiana (Amazon basin). Ecotoxicology and Environmental Safety, 60, 315–323.

    Article  CAS  Google Scholar 

  • Edwards, C. A.,. & Bohlen, P. J. (1996). Biology and ecology of earthworms. New York: Springer.

  • Eisler, R. (2003). Health risks of gold miners: a synoptic review. Environmental Geochemistry Health, 25, 325–345.

    Article  CAS  Google Scholar 

  • Equeenuddin, S. M., Tripathy, S., Sahoo, P., & Panigrahi, M. (2013). Metal behavior in sediment associated with acid mine drainage stream: role of pH. Journal of Geochemical Exploration, 124, 230–237.

    Article  CAS  Google Scholar 

  • Ferreira da Silva, E., Zhang, C., Serrano Pinto, L. s., Patinha, C., & Reis, P. (2004). Hazard assessment on arsenic and lead in soils of Castromil gold mining area, Portugal. Applied Geochemistry, 19, 887–898.

    Article  CAS  Google Scholar 

  • Finkenbein, P., Kretschmer, K., Kuka, K., Klotz, S., & Heilmeier, H. (2013). Soil enzyme activities as bioindicators for substrate quality in revegetation of a subtropical coal mining dump. Soil Biology and Biochemistry, 56, 87–89.

    Article  CAS  Google Scholar 

  • Fourie, A. (2009). Preventing catastrophic failures and mitigating environmental impacts of tailings storage facilities. Procedia Earth and Planetary Science, 1, 1067–1071.

    Article  Google Scholar 

  • Hankard, P. K., Svendsen, C., Wright, J., Wienberg, C., Fishwick, S. K., Spurgeon, D. J., & Weeks, J. M. (2004). Biological assessment of contaminated land using earthworm biomarkers in support of chemical analysis. The Science of the Total Environment, 330, 9–20.

    Article  CAS  Google Scholar 

  • Harreus, D., Köhler, H.-R., & Weeks, J. (1997). Combined non-invasive cell isolation and neutral-red retention assay for measuring the effects of copper on the lumbricid Aporrectodea rosea (Savigny). Bulletin of Environmental Contamination and Toxicology, 59, 44–49.

    Article  CAS  Google Scholar 

  • Herselman, J. E., Steyn, C. E., & Fey, M. V. (2005). Baseline concentration of Cd, Co, Cr, Cu, Pb, Ni and Zn in surface soils of South Africa. South African Journal of Science, 101, 509–512.

    CAS  Google Scholar 

  • Hilson, G., & Murck, B. (2001). Progress toward pollution prevention and waste minimization in the North American gold mining industry. Journal of Cleaner Production, 9, 405–415.

    Article  Google Scholar 

  • American Society for Testing and Materials. (2004). Annual book of ASTM standards. Pennsylvania: American Society for Testing and Materials.

    Google Scholar 

  • Jubileus, M. T., Theron, P. D., van Rensburg, L., & Maboeta, M. S. (2013). Utilizing Eisenia andrei to assess the ecotoxicity of platinum mine tailings disposal facilities. Ecotoxicology, 22, 331–338.

    Article  CAS  Google Scholar 

  • Kandeler, E., & Gerber, H. (1988). Short-term assay of soil urease activity using colorimetric determination of ammonium. Biology and Fertility of Soils, 6, 68–72.

    Article  CAS  Google Scholar 

  • Katz, S., & Jenniss, S. (1983). Regulatory compliance monitoring by atomic absorption spectroscopy. Florida: Verlag Chemistry International. 278 pp.

    Google Scholar 

  • Khalil, M. A., Abdel-Lateif, H. M., Bayoumi, B. M., & van Straalen, N. M. (1996). Analysis of separate and combined effects of heavy metals on the growth of Aporrectodea caliginosa (Oligochaeta; Annelida), using the toxic unit approach. Applied Soil Ecology, 4, 213–219.

    Article  Google Scholar 

  • La Brooy, S., Linge, H., & Walker, G. (1994). Review of gold extraction from ores. Minerals Engineering, 7, 1213–1241.

    Article  Google Scholar 

  • Lee, S.-H., Kim, E.-Y., Hyun, S., & Kim, J.-G. (2009). Metal availability in heavy metal-contaminated open burning and open detonation soil: assessment using soil enzymes, earthworms, and chemical extractions. Journal of Hazardous Materials, 170, 382–388.

    Article  CAS  Google Scholar 

  • Li, Q., Lee Allen, H., & Wollum, A. G., II. (2004). Microbial biomass and bacterial functional diversity in forest soils: effects of organic matter removal, compaction, and vegetation control. Soil Biology and Biochemistry, 36, 571–579.

    Article  CAS  Google Scholar 

  • Maboeta, M., Rensburg, L. v., & Rensburg, P. J. v. (2008). Earthworm (Eisenia fetida) bioassay of platinum mine tailings. Applied Ecology and Environmental Research, 6, 13–19.

  • Maboeta, M., Van Wyk, S., Van Rensburg, L., & van Rensburg, P. J. (2006a). The effect of platinum mining on surrounding soils and vegetation: a preliminary assessment (pp. 6–8). Lanzarote: IASTED International Conference on Advanced Technology in the Environmental Field.

  • Maboeta, M. S., Claassens, S., Van Rensburg, L., & Van Rensburg, P. J. J. (2006b). The effects of platinum mining on the environment from a soil microbial perspective. Water, Air, and Soil Pollution, 175, 149–161.

    Article  CAS  Google Scholar 

  • Malecki, M. R., Neuhauser, E. F. & Loehr, R. C. (1982). Effect of metals on the growth and reproduction of Eisenia foetida (Oligochaeta, Lumbricidae). Pedobiologia, 24, 129–137

  • Marabottini, R., Stazi, S., Papp, R., Grego, S., & Moscatelli, M. (2013). Mobility and distribution of arsenic in contaminated mine soils and its effects on the microbial pool. Ecotoxicology and Environmental Safety, 96, 147–153.

    Article  CAS  Google Scholar 

  • MBendi Information Services (Pty) Ltd (2014). Mining in South Africa-overview. Cape Town, South Africa: MBendi Information Services.

  • Ministry of Housing Spatial planning and Environment (VROM) (2000). Annexes A–D: circular on target values and intervention values for soil remediation. South Africa: Ministry of Housing

  • Moore, M. N. (1980). Cytochemical determination of cellular responses to environmental stressors in marine organisms. Rap Et Proces – Ver des Réun Cons Int pour I’Explor de la Mer, 170, 7–15.

    Google Scholar 

  • Natal-da-Luz, T., Ojeda, G., Pratas, J., Van Gestel, C. A., & Sousa, J. P. (2011). Toxicity to Eisenia andrei and Folsomia candida of a metal mixture applied to soil directly or via an organic matrix. Ecotoxicology and Environmental Safety, 74, 1715–1720.

    Article  CAS  Google Scholar 

  • Neuhauser, E., Malecki, M., & Loehr, R. (1984). Growth and reproduction of the earthworm Eisenia fetida after exposure to sublethal concentrations of metals. Pedobiologia, 27, 89–97.

    CAS  Google Scholar 

  • Ning, L., Liyuan, Y., Jirui, D., & Xugui, P. (2011). Heavy metal pollution in surface water of Linglong gold mining area, China. Procedia Environmental Sciences, 10, 914–917.

    Article  Google Scholar 

  • Ohno, M. (2001). Sensitivity of a Japanese earthworm (Allolobophora japonica) to soil acidity. In: Acid rain 2000. the Netherlands: Springer, pp. 1019-1024.

  • Otomo, P. V., Wahl, J., & Maboeta, M. S. (2013). The enchytraeid reproduction test (ERT): a potentially quick and affordable tool for the assessment of metal contaminated soils in emerging economies. Bulletin of Environmental Contamination and Toxicology, 91, 545–548.

    Article  Google Scholar 

  • Papa, S., Bartoli, G., Pellegrino, A., & Fioretto, A. (2010). Microbial activities and trace element contents in an urban soil. Environmental Monitoring and Assessment, 165, 193–203.

    Article  CAS  Google Scholar 

  • Pereira, R., Sousa, J., Ribeiro, R., & Gonçalves, F. (2006). Microbial indicators in mine soils (S. Domingos Mine, Portugal). Soil & Sediment Contamination, 15, 147–167.

    Article  CAS  Google Scholar 

  • Pfeiffer, W., Lacerda, L., Salomons, W., & Malm, O. (1993). Environmental fate of mercury from gold mining in the Brazilian Amazon. Environmental Reviews, 1, 26–37.

    Article  CAS  Google Scholar 

  • Qasim, B., Motelica-Heino, M., Joussein, E., Soubrand, M. & Gauthier, A. (2015). Potentially toxic element phytoavailability assessment in Technosols from former smelting and mining areas, Environmental Science Pollution Research, 22, 5961–5974

  • Qiu, H., Gu, H.-H., He, E.-K., Wang, S.-Z., & Qiu, R.-L. (2012). Attenuation of metal bioavailability in acidic multi-metal contaminated soil treated with fly ash and steel slag. Pedosphere, 22, 544–553.

    Article  CAS  Google Scholar 

  • Reece, R. (1997). Cyanide toxicity to birds. Short course notes on management of cyanide mining.. Perth: ACMRR.

    Google Scholar 

  • Rocco, A., Scott-Fordsmand, J. J., Maisto, G., Manzo, S., Salluzzo, A., & Jensen, J. (2011). Suitability of lysosomal membrane stability in Eisenia fetida as biomarker of soil copper contamination. Ecotoxicology and Environmental Safety, 74, 984–988.

    Article  CAS  Google Scholar 

  • Rossouw, A., Annegarn, H., Weiersbye, I., & Furniss, D. (2010). Evaluating the functional status of a rehabilitated gold tailings storage facility—a case study in the Witwatersrand. South African Journal of Botany, 76, 402.

    Article  Google Scholar 

  • Schimann, H., Petit-Jean, C., Guitet, S., Reis, T., Domenach, A. M., & Roggy, J.-C. (2012). Microbial bioindicators of soil functioning after disturbance: the case of gold mining in tropical rainforests of French Guiana. Ecological Indicators, 20, 34–41.

    Article  CAS  Google Scholar 

  • Scott-Fordsmand, J. J., Weeks, J. M., & Hopkin, S. P. (1998). Toxicity of nickel to the earthworm and the applicability of the neutral red retention assay. Ecotoxicology, 7, 291–295.

    Article  CAS  Google Scholar 

  • Sinha, R. K. (2010). Vermiculture technology: reviving the dreams of Sir Charles Darwin for scientific use of earthworms in sustainable development programs. Technology and Investment, 01, 155–172.

    Article  Google Scholar 

  • South Africa, S. (2014). National norms and standards for the remediation of contaminated land and soil quality in the Republic of South Africa, 37603. Pretoria: Government Gazette.

    Google Scholar 

  • Spurgeon, D., & Hopkin, S. (1996). Effects of variations of the organic matter content and pH of soils on the availability and toxicity of zinc to the earthworm Eisenia fetida. Pedobiologia, 40, 80–96.

    CAS  Google Scholar 

  • Svendsen, C., Spurgeon, D. J., Hankard, P. K., & Weeks, J. M. (2004). A review of lysosomal membrane stability measured by neutral red retention: is it a workable earthworm biomarker? Ecotoxicology and Environmental Safety, 57, 20–29.

    Article  CAS  Google Scholar 

  • Swartjes, F., Rutgers, M., Lijzen, J., Janssen, P., Otte, P., Wintersen, A., Brand, E., & Posthuma, L. (2012). State of the art of contaminated site management in the Netherlands: policy framework and risk assessment tools. The Science of the Total Environment, 427, 1–10.

    Article  Google Scholar 

  • Van Coller-Myburgh, C., Van Rensburg, L., & Maboeta, M. (2014). Utilizing earthworm and microbial assays to assess the ecotoxicity of chromium mine wastes. Applied Soil Ecology, 83, 258–265.

    Article  Google Scholar 

  • Van Gestel, C., & Van Straalen, N. (1994). Ecotoxicological test systems for terrestrial invertebrates. Boca Raton, FL: CRC Lewis Publishers.

    Google Scholar 

  • Van Gestel, C. A., Koolhaas, J. E., Hamers, T., Van Hoppe, M., Van Roovert, M., Korsman, C., & Reinecke, S. A. (2009). Effects of metal pollution on earthworm communities in a contaminated floodplain area: linking biomarker, community and functional responses. Environmental Pollution, 157, 895–903.

    Article  Google Scholar 

  • Van Straalen, N., & Van Gestel, C. (1994). Soil invertebrates and micro‐organisms. Oxford: Blackwell Scientific Publications. 416 pp.

    Google Scholar 

  • Vernile, P., Fornelli, F., Bari, G., Spagnuolo, M., Minervini, F., de Lillo, E., & Ruggiero, P. (2007). Bioavailability and toxicity of pentachlorophenol in contaminated soil evaluated on coelomocytes of Eisenia andrei (Annelida: Lumbricidae). Toxicology in vitro, 21, 302–307.

    Article  CAS  Google Scholar 

  • Von Mersi, W., & Schinner, F. (1991). An improved and accurate method for determining the dehydrogenase activity of soils with iodonitrotetrazolium chloride. Biology and Fertility of Soils, 11, 216–220.

    Article  Google Scholar 

  • Wahl, J. J., Theron, P. D., & Maboeta, M. S. (2012). Soil mesofauna as bioindicators to assess environmental disturbance at a platinum mine in South Africa. Ecotoxicology and Environmental Safety, 86, 250–260.

    Article  CAS  Google Scholar 

  • Wong, H. K. T., Gauthier, A., & Nriagu, J. O. (1999). Dispersion and toxicity of metals from abandoned gold mine tailings at Goldenville, Nova Scotia, Canada. The Science of the Total Environment, 228, 35–47.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is based upon the research supported by the National Research Foundation of South Africa. We thank Pieter Hermanus Myburgh for his assistance.

Compliance with Ethical Standards

We hereby declare that the research has no possible conflicts of interest and that the animals (earthworms) used in this study were done according to ethical compliant standards.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Maboeta.

Additional information

Capsule abstract

Soil enzymatic activities are sensitive indicators of metal pollution in mining areas. Earthworms can be used to assess the ecotoxic effects of gold tailing disposal facilities.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Coller-Myburgh, C., van Rensburg, L. & Maboeta, M. Assessing the Ecotoxicity of Gold Mine Tailings Utilizing Earthworm and Microbial Assays. Water Air Soil Pollut 226, 218 (2015). https://doi.org/10.1007/s11270-015-2492-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-015-2492-5

Keywords

Navigation