Skip to main content
Log in

A Performance Evaluation of Volumetric 3D Interest Point Detectors

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

This paper presents the first performance evaluation of interest points on scalar volumetric data. Such data encodes 3D shape, a fundamental property of objects. The use of another such property, texture (i.e. 2D surface colouration), or appearance, for object detection, recognition and registration has been well studied; 3D shape less so. However, the increasing prevalence of 3D shape acquisition techniques and the diminishing returns to be had from appearance alone have seen a surge in 3D shape-based methods. In this work, we investigate the performance of several state of the art interest points detectors in volumetric data, in terms of repeatability, number and nature of interest points. Such methods form the first step in many shape-based applications. Our detailed comparison, with both quantitative and qualitative measures on synthetic and real 3D data, both point-based and volumetric, aids readers in selecting a method suitable for their application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 7
Fig. 6
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. Covariant characteristics, often (inaccurately) referred to as invariant characteristics, undergo the same transformation as the data. We prefer “covariant” in order to distinguish truly invariant characteristics.

  2. When referring to interest points in the context of methodology, we include image features such as corners, lines, edges and blobs.

References

  • Aanæs, H., Dahl, A. L., & Pedersen, K. S. (2010). On recall rate of interest point detectors. In Proceedings of the fifth international symposium on 3D data processing, visualization and transmission.

    Google Scholar 

  • Bay, H., Ess, A., Tuytelaars, T., & Gool, L. V. (2008). Speeded-up robust features (surf). Computer Vision and Image Understanding, 110(3), 346–359.

    Article  Google Scholar 

  • Besl, P. J., & McKay, N. D. (1992). A method for registration of 3-D shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(2), 239–256.

    Article  Google Scholar 

  • Bhatia, A., Laganiere, R., & Gerhard Roth, G. (2007). Performance evaluation of scale-interpolated Hessian-Laplace and Haar descriptors for feature matching. In The 14th international conference on image analysis and processing (pp. 61–66).

    Google Scholar 

  • Bowyer, K., Kranenburg, C., & Dougherty, S. (1999). Edge detector evaluation using empirical ROC curves. In Proceedings of the IEEE conference on computer vision and pattern recognition (Vol. 1, p. 2). vol. (xxiii+637+663).

    Google Scholar 

  • Brand, P., Mohr, R., & Rhones-Alpes, L. I. (1994). Accuracy in image measure. In Proceedings of the SPIE conference on videometrics III (Vol. 2350, pp. 218–228).

    Google Scholar 

  • Bronstein, A., Bronstein, M., & Kimmel, R. (2008). Numerical geometry of non-rigid shapes (1st ed.). Berlin: Springer.

    MATH  Google Scholar 

  • Brown, M., & Lowe, D. G. (2005). Unsupervised 3D object recognition and reconstruction in unordered datasets. In Proceedings of the fifth international conference on 3-D digital imaging and modeling (pp. 56–63). Washington: IEEE Comput. Soc.

    Chapter  Google Scholar 

  • Cocosco, C. A., Kollokian, V., Kwan, R. K. S., Pike, G. B., & Evans, A. C. (1997). BrainWeb: online interface to a 3D MRI simulated brain database. NeuroImage, 5, 425.

    Google Scholar 

  • Coelho, C., Heller, A., Mundy, J. L., Forsyth, D. A., & Zisserman, A. (1992). An experimental evaluation of projective invariants. In J. L. Mundy & A. Zisserman (Eds.), Geometric invariance in computer vision (pp. 87–104). Cambridge: MIT Press.

    Google Scholar 

  • Cornelis, N., & Gool, L. V. (2008). Fast scale invariant feature detection and matching on programmable graphics hardware. In The IEEE conference on computer vision and pattern recognition workshops (pp. 1–8).

    Google Scholar 

  • Criminisi, A., Shotton, J., Robertson, D. P., & Konukoglu, E. (2010). Regression forests for efficient anatomy detection and localization in CT studies. In B. H. Menze, G. Langs, Z. Tu, & A. Criminisi (Eds.), Lecture notes in computer science: Vol. 6533. The MICCAI workshop of medical computer vision 2010: recognition techniques and applications in medical imaging (pp. 106–117). Berlin: Springer.

    Chapter  Google Scholar 

  • Dalvi, R., Hacihaliloglu, I., & Abugharbieh, R. (2010). 3D ultrasound volume stitching using phase symmetry and Harris corner detection for orthopaedic applications. In SPIE medical imaging (p. 762330).

    Google Scholar 

  • Dohi, K., Yorita, Y., Shibata, Y., & Oguri, K. (2011). Pattern compression of fast corner detection for efficient hardware implementation. In The international conference on field programmable logic and applications (FPL) (pp. 478–481).

    Google Scholar 

  • Donner, R., Birngruber, E., Steiner, H., Bischof, H., & Langs, G. (2011). Localization of 3d anatomical structures using random forests and discrete optimization. In B. Menze, G. Langs, Z. Tu, & A. Criminisi (Eds.), Lecture notes in computer science: Vol. 6533. Medical computer vision. Recognition techniques and applications in medical imaging (pp. 86–95). Berlin: Springer.

    Chapter  Google Scholar 

  • Donoser, M., & Bischof, H. (2006). 3d segmentation by maximally stable volumes (MSVS). In Proceedings of the international conference on pattern recognition (Vol. 1, pp. 63–66).

    Google Scholar 

  • Dutagaci, H., Cheung, C. P., & Godil, A. (2011). Evaluation of 3D interest point detection techniques. In Proceedings of Eurographics workshop on 3D object retrieval, Llandudno, UK (pp. 57–64).

    Google Scholar 

  • Fisher, R. B. (1987). Modelling second order volumetric features. In Proceedings of the 3rd Alvey vision conference (pp. 79–86).

    Google Scholar 

  • Flitton, G., Breckon, T., & Bouallagu, N. M. (2010). Object recognition using 3D SIFT in complex CT volumes. In Proceedings of the British machine vision conference. Guildford: BMVA Press.

    Google Scholar 

  • Gomb, P. (2009). Detection of interest points on 3d data: extending the Harris operator. In M. Kurzynski & M. Wozniak (Eds.), Computer recognition systems 3, advances in intelligent and soft computing (Vol. 57, pp. 103–111). Berlin: Springer.

    Google Scholar 

  • Harris, C., & Stephens, M. (1988). A combined corner and edge detection. In Proceedings of the 4th Alvey vision conference (pp. 147–151).

    Google Scholar 

  • Heath, M. D., Sarkar, S., Sanocki, T., & Bowyer, K. W. (1997). A robust visual method for assessing the relative performance of edge-detection algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(12), 1338–1359.

    Article  Google Scholar 

  • Janoch, A., Karayev, S., Jia, Y., Barron, J., Fritz, M., Saenko, K., & Darrell, T. (2011). A category-level 3-d object dataset: putting the kinect to work. In The IEEE international conference on computer vision workshops (pp. 1168–1174).

    Google Scholar 

  • Knopp, J., Prasad, M., Willems, G., Timofte, R., & Gool, L. V. (2010). Hough transform and 3D SURF for robust three dimensional classification. In Proceedings of the European conference on computer vision (pp. 589–602). Berlin: Springer.

    Google Scholar 

  • Koelstra, S., & Patras, I. (2009). The FAST-3D spatio-temporal interest region detector. In Workshop on image analysis for multimedia interactive services (pp. 242–245).

    Google Scholar 

  • Kristensen, F., & MacLean, W. J. (2007). Real-time extraction of maximally stable extremal regions on an fpga. In The IEEE international symposium on circuits and systems 2007 (pp. 165–168).

    Chapter  Google Scholar 

  • Lai, K., & Fox, D. (2010). Object recognition in 3d point clouds using web data and domain adaptation. The International Journal of Robotics Research, 29(8), 1019–1037.

    Article  Google Scholar 

  • Laptev, I. (2005). On space-time interest points. International Journal of Computer Vision, 64(2–3), 107–123.

    Article  Google Scholar 

  • Laptev, I., & Lindeberg, T. (2003). A distance measure and a feature likelihood map concept for scale-invariant model matching. International Journal of Computer Vision, 52(2–3), 97–120.

    Article  Google Scholar 

  • Lindeberg, T. (1998). Feature detection with automatic scale selection. International Journal of Computer Vision, 30(2), 79–116.

    Article  Google Scholar 

  • Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60(2), 91–110.

    Article  Google Scholar 

  • Matas, J., Chum, O., Urban, M., & Pajdla, T. (2004). Robust wide-baseline stereo from maximally stable extremal regions. Image and Vision Computing, 22(10), 761–767.

    Article  Google Scholar 

  • Mikolajczyk, K. (2004). Scale & affine invariant interest point detectors. International Journal of Computer Vision, 60(1), 63–86.

    Article  Google Scholar 

  • Mikolajczyk, K., & Schmid, C. (2002). An affine invariant interest point detector. In ECCV ’02: Vol. 1. Proceedings of the European conference on computer vision (pp. 128–142). London: Springer.

    Google Scholar 

  • Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., Kadir, T., & Gool, L. V. (2005). A comparison of affine region detectors. International Journal of Computer Vision, 65(1/2), 43–72.

    Article  Google Scholar 

  • Ni, D., Qu, Y., Yang, X., Chui, Y. P., Wong, T. T., Ho, S. S., & Heng, P. A. (2008). Volumetric ultrasound panorama based on 3d sift. In Proceedings of the 11th international conference on medical image computing and computer-assisted intervention MICCAI’08 (Vol. 2, pp. 52–60). Berlin: Springer.

    Google Scholar 

  • Papazov, C., & Burschka, D. (2011). An efficient RANSAC for 3D object recognition in noisy and occluded scenes. In Proceedings of the 10th Asian conference on computer vision (pp. 135–148). Berlin: Springer.

    Google Scholar 

  • Pham, M. T., Woodford, O. J., Perbet, F., Maki, A., Stenger, B., & Cipolla, R. (2011). A new distance for scale-invariant 3d shape recognition and registration. In Proceedings of the IEEE international conference on computer vision (pp. 145–152).

    Google Scholar 

  • Prasad, M., Knopp, J., & Gool, L. V. (2011). Class-specific 3D localization using constellations of object parts. In Proceedings of the British machine vision conference. British Machine Vision Association.

    Google Scholar 

  • Rajan, P. K., & Davidson, J. M. (1989). Evaluation of corner detection algorithms. In Proceedings of the 21st Southeastern symposium on system theory (pp. 29–33).

    Chapter  Google Scholar 

  • Riemenschneider, H., Donoser, M., & Bischof, H. (2009). Bag of optical flow volumes for image sequence recognition. In Proceedings of the British machine vision conference. British Machine Vision Association.

    Google Scholar 

  • Rosten, E., Porter, R., & Drummond, T. (2010). Faster and better: a machine learning approach to corner detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32, 105–119.

    Article  Google Scholar 

  • Ruiz-Alzola, J., Kikinis, R., & Westin, C. F. (2001). Detection of landmarks in multidimensional tensor data. Signal Processing, 81, 2243–2247.

    Article  Google Scholar 

  • Salti, S., Tombari, F., & Stefano, L. D. (2011). A performance evaluation of 3d keypoint detectors. In Proceedings of the 2011 international conference on 3D imaging, modeling, processing, visualization and transmission, 3DIMPVT’11 (pp. 236–243). Washington: IEEE Comput. Soc.

    Chapter  Google Scholar 

  • Schmid, C., Mohr, R., & Bauckhage, C. (2000). Evaluation of interest point detectors. International Journal of Computer Vision, 37(2), 151–172.

    Article  MATH  Google Scholar 

  • Shilane, P., Min, P., Kazhdan, M., & Funkhouser, T. (2004). The Princeton shape benchmark. In Proceedings of the shape modeling international 2004, SMI’04 (pp. 167–178). Washington: IEEE Comput. Soc.

    Chapter  Google Scholar 

  • Shin, M. C., Goldgof, D., & Bowyer, K. W. (1999). Comparison of edge detectors using an object recognition task. In Proceedings of the IEEE conference on computer vision and pattern recognition (Vol. 1, p. 1360).

    Google Scholar 

  • Sinha, S. N., Frahm, J. M., Pollefeys, M., & Genc, Y. (2006). Gpu-based video feature tracking and matching. In Workshop on edge computing using new commodity architectures (Vol. 278).

    Google Scholar 

  • Sipiran, I., & Bustos, B. (2011). Harris 3D: a robust extension of the Harris operator for interest point detection on 3D meshes. The Visual Computer, 27(11), 963–976. Special Issue on 3DOR 2010.

    Article  Google Scholar 

  • Smith, S. M., & Brady, J. M. (1997). SUSANa new approach to low level image processing. International Journal of Computer Vision, 23(1), 45–78.

    Article  Google Scholar 

  • Teixeira, L., Celes, W., & Gattass, M. (2009). Accelerated corner-detector algorithms.

    Google Scholar 

  • Tuytelaars, T., & Mikolajczyk, K. (2008). Local invariant feature detectors: a survey. Foundations and Trends in Computer Graphics and Vision, 3(3), 177–280.

    Article  Google Scholar 

  • Unnikrishnan, R., & Hebert, M. (2008). Multi-scale interest regions from unorganized point clouds. In Workshop on search in 3D (S3D) (pp. 1–8). IEEE conference on computer vision and pattern recognition.

    Google Scholar 

  • Vikstén, F., Nordberg, K., & Kalms, M. (2008). Point-of-interest detection for range data. In Proceedings of the international conference on pattern recognition (pp. 1–4).

    Google Scholar 

  • Vogiatzis, G., & Hernández, C. (2011). Video-based, real-time multi view stereo. Image and Vision Computing, 29(7), 434–441.

    Article  Google Scholar 

  • Wessel, R., Novotni, M., & Klein, R. (2006). Correspondences between salient points on 3D shapes. In Proceedings of vision, modeling, and visualization workshop 2006 (VMV 2006) (pp. 365–372). Berlin: Akad. Verlagsgesellschaft.

    Google Scholar 

  • Willems, G., Tuytelaars, T., & Gool, L. (2008). An efficient dense and scale-invariant spatio-temporal interest point detector. In Proceedings of the European conference on computer vision, ECCV’08 (Vol. 2, pp. 650–663). Berlin: Springer.

    Google Scholar 

  • Willems, G., Becker, J. H., Tuytelaars, T., & Gool, L. J. V. (2009). Exemplar-based action recognition in video. In Proceedings of the British machine vision conference. British Machine Vision Association.

    Google Scholar 

  • Willis, A., & Sui, Y. (2009). An algebraic model for fast corner detection. In Proceedings of the IEEE international conference on computer vision (pp. 2296–2302).

    Google Scholar 

  • Yu, T. H., Kim, T. K., & Cipolla, R. (2010). Real-time action recognition by spatiotemporal semantic and structural forest. In Proceedings of the British machine vision conference. British Machine Vision Association.

    Google Scholar 

  • Zaharescu, A., Boyer, E., Varanasi, K., & Horaud, R. P. (2009). Surface feature detection and description with applications to mesh matching. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 373–380).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsz-Ho Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, TH., Woodford, O.J. & Cipolla, R. A Performance Evaluation of Volumetric 3D Interest Point Detectors. Int J Comput Vis 102, 180–197 (2013). https://doi.org/10.1007/s11263-012-0563-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-012-0563-2

Keywords

Navigation