Skip to main content
Log in

Modeling sequences of user actions for statistical goal recognition

  • Original Paper
  • Published:
User Modeling and User-Adapted Interaction Aims and scope Submit manuscript

Abstract

User goals are of major importance for an interface agent because they serve as a context to define what the user’s focus of attention is at a given moment. The user’s goals should be detected as soon as possible, after observing few user actions, in order to provide the user with timely assistance. In this article, we describe an approach for modeling and recognizing user goals from observed sequences of user actions by using Variable Order Markov models combined with an exponential moving average (EMA) on the prediction probabilities. The validity of our approach has been tested using data collected from real users in the Unix domain. The results obtained show that an interface agent can achieve near 90% average accuracy and over 58% online accuracy in predicting the most probable user goal after each observed action, in a time linear to the number of goals being modeled. We also found that the use of an EMA allows a faster convergence in the actual user goal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amandi A. et al.: Recognition of user intentions for interface agents with variable order Markov models. In: Houben, G.-J (eds) UMAP 2009 Lecture Notes in Computer Science vol 5535., pp. 173–184. Springer, Heidelberg (2009)

    Google Scholar 

  • Armentano M.G., Amandi A.A.: Personalized detection of user intentions. Knowl. Based Syst. 24(8), 1169–1180 (2011)

    Article  Google Scholar 

  • Armentano M., Godoy D., Amandi A.: Personal assistants: direct manipulation vs. mixed initiative interfaces. Int. J. Hum. Comput. Stud. 64(1), 27–35 (2006)

    Article  Google Scholar 

  • Bauer, M.: Acquisition of abstract plan descriptions for plan recognition. In: AAAI ’98/IAAI ’98: Proceedings of the Fifteenth National/Tenth Conference on Artificial Intelligence/Innovative Applications of Artificial Intelligence, Menlo Park, pp. 936–941. American Association for Artificial Intelligence, Menlo Park (1998)

  • Bauer M.: From interaction data to plan libraries: a clustering approach. In: IJCAI ’99: Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence, San Francisco, pp. 962–967. Morgan Kaufmann, San Fransisco (1999)

  • Begleiter R., El-yaniv R., Yona G.: On prediction using variable order Markov models. J. Artif. Intell. Res. 22, 385–421 (2004)

    MathSciNet  MATH  Google Scholar 

  • Bejerano G., Yona G.: Variations on probabilistic suffix trees: statistical modeling and prediction of protein families. Bioinformatics 1(17), 23–43 (2001)

    Article  Google Scholar 

  • Blaylock N.: Towards Tractable Agent-Based Dialogue. Ur csd/ tr880. Computer Science Department, University of Rochester, Rochester (2005)

    Google Scholar 

  • Blaylock, N., Allen, J.: Corpus-based, statistical goal recognition. In: Proceedings of the Eighteenth International Joint Conference on Artificial Intelligence, Acapulco, pp. 1303–1308 (2003)

  • Blaylock, N., Allen, J.: Recognizing instantiated goals using statistical methods. In: Kaminka, G. (ed.) IJCAI Workshop on Modeling Others from Observations (MOO-2005), Edinburgh, pp. 79–86 (2005)

  • Brand, M., Oliver, N., Pentland, A.: Coupled hidden Markov models for complex action recognition. In: Proceedings of the 1997 Conference on Computer Vision and Pattern Recognition (CVPR ’97), Washington, pp. 994–999 (1997)

  • Bratko A., Cormack G.V., Filipic B., Lynam T.R., Zupan B.: Spam filtering using statistical data compression models. J. Mach. Learn. Res. 7, 2673–2698 (2006)

    MathSciNet  MATH  Google Scholar 

  • Brown, S.M.: A decision theoretic approach for interface agent development. PhD thesis, Wright Patterson AFB. AAI9905125 (1998)

  • Bui H., Venkatesh S., West G.: Policy recognition in the abstract hidden Markov model. J. Artif. Intell. Res. 17, 451–499 (2002)

    MathSciNet  MATH  Google Scholar 

  • Bui H.H.: A general model for online probabilistic plan recognition. In: Gottlob, G., Walsh, T. (eds) Proceedings of the Eighteenth International Joint Conference on Artificial Intelligence (IJCAI ’03), pp. 1309–1318. Morgan Kaufmann, Acapulco (2003)

    Google Scholar 

  • Buntine, W.: Theory refinement on bayesian networks. In: Proceedings of the Seventh Conference on Uncertainty in Artificial Intelligence. Morgan Kaufmann, San Francisco, pp. 52–60 (1991)

  • Card S.K., Newell A., Moran T.P.: The Psychology of Human–Computer Interaction. Lawrence Erlbaum, Hillsdale (1983)

    Google Scholar 

  • Charniak E., Goldman R.: A probabilistic model of plan recognition. In: Proceedings of the Ninth National Conference on Artificial Intelligence, AAAI’91, vol. 1, pp. 160–165. AAAI Press, Menlo Park (1991)

  • Cooper G., Herskovits E.: A bayesian method for the induction of probabilistic networks from data. Mach. Learn. 9(4), 309–347 (1992)

    MATH  Google Scholar 

  • Davison, B.D., Hirsh, H.: Predicting sequences of user actions. In: Predicting the Future: AI Approaches to Time Series. AAAI Press, Menlo Park (1998)

  • Dempster A., Laird N., Rubin D.: Maximum likelihood from incomplete data via the em algorithm. J. Roy. Stat. Soc. 39(1), 1–38 (1977)

    MathSciNet  MATH  Google Scholar 

  • Duong, T.V., Phung, D.Q., Bui, H.H., Venkatesh, S.: Human behavior recognition with generic exponential family duration modeling in the hidden semi-Markov model. In: International Conference on Pattern Recognition, Hong Kong, vol. 3, pp. 202–207 (2006)

  • Fine S., Singer Y., Tishby N.: The hierarchical hidden Markov model: analysis and applications. Mach. Learn. 32, 41–62 (1998)

    Article  MATH  Google Scholar 

  • Galata A., Johnson N., Hogg D.: Learning variable-length Markov models of behavior. Comput. Vis. Image Underst. 81(3), 398–413 (2001)

    Article  MATH  Google Scholar 

  • Garland, A., Lesh, N.: Learning hierarchical task models by demonstration, Technical Report TR2002-04. Mitsubishi Electric Research Laboratories, Cambridge (2002)

  • Geib, C.W., Maraist, J., Goldman, R.P.: A new probabilistic plan recognition algorithm based on string rewriting. In: Proceedings of the International Conference on Automated Planning and Scheduling (ICAPS 2008), Sydney, pp. 91–98 (2008)

  • Goldman, R., Geib, C., Miller, C.: Learning hierarchical task models by defining and refining examples. In: Proceedings of the 15th Annual Conference on Uncertainty in Artificial Intelligence (UAI-99), pp. 245–254. Morgan Kaufmann, San Francisco (1999)

  • Gorniak P., Poole D.: Building a stochastic dynamic model of application. In: Boutilier, C., Goldszmidt, M. (eds) Sixteenth Conference on Uncertainty in Artificial Intelligence (UAI-2000), pp. 230–237. Stanford University, Morgan Kaufmann, San Francisco (2000)

    Google Scholar 

  • Hong J.: Goal recognition through goal graph analysis. J. Artif. Intell. Res. 15, 1–30 (2001)

    MATH  Google Scholar 

  • Horvitz E., Breese J., Heckerman D., Hovel D., Rommelse K.: The Lumière project: Bayesian user modeling for inferring the goals and needs of software users. In: Cooper, G.F., Moral, S. (eds) Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence, pp. 256–265. Morgan Kaufmann, San Mateo (1998)

    Google Scholar 

  • Hu J., Turin W., Brown M.K.: Language modeling using stochastic automata with variable length contexts. Comput. Speech Lang. 11(1), 1–16 (1997)

    Article  Google Scholar 

  • Hunter J.S.: The exponentially weighted moving average. J. Qual. Technol. 18(4), 203–209 (1986)

    Google Scholar 

  • Kautz H.: A formal theory of plan recognition and its implementation. In: Allen, J.F., Kautz, H.A., Pelavin, R., Tenenberg, J. (eds) Reasoning About Plans, pp. 69–125. Morgan Kaufmann, San Mateo (1991)

    Google Scholar 

  • Kearns, M., Mansour, Y., Ron D., Rubinfeld, R., Schapire, R.E., Sellie, L.: On the learnability of discrete distributions. In: Proceedings of the 26th Annual ACM Symposium on Theory of Computing, pp. 273–282. ACM Press, New York (1994)

  • Köck M., Paramythis A.: Activity sequence modelling and dynamic clustering for personalized e-learning. User Model. User Adapt. Interact. 21, 51–97 (2011)

    Article  Google Scholar 

  • Lesh, N.: Scalable and adaptive goal recognition. PhD thesis, University of Washington, Washington (1998)

  • Lesh, N., Rich, C., Sidner, C.L.: Using plan recognition in human-computer collaboration. In: Proceedings of the Seventh International Conference on User modeling, Secaucus, pp. 23–32. Springer, New York (1999)

  • Liao L., Patterson D.J., Fox D., Kautz H.A.: Learning and inferring transportation routines. Artifi. Intell. 171(5–6), 311–331 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Lieberman H.: Your Wish Is My Command: Programming by Example. Morgan Kaufmann, San Francisco (2001)

    Google Scholar 

  • Madani, O., Bui, H., Yeh, E.: Efficient online learning and prediction of user’s desktop activities. In: Proceedings of IJCAI 2009, Pasadena, vol. 3, pp. 1457–1462 (2009)

  • Maes P.: Agents that reduce work and information overload. Commun. ACM 37, 30–40 (1994)

    Article  Google Scholar 

  • Nguyen, N.T., Phung, D.Q., Venkatesh, S., Bui, H.H.: Learning and detecting activities from movement trajectories using the hierarchical hidden Markov model. In: IEEE Computer Vision and Pattern Recognition or CVPR, pp. 955–960. IEEE Computer Society, Washington (2005)

  • Nkambou R., Fournier-Viger P., Nguifo E.M.: Learning task models in ill-defined domain using an hybrid knowledge discovery framework. Knowl. Based Syst. 24, 176–185 (2011)

    Article  Google Scholar 

  • Nunez-Yanez J.L., Chouliaras V.A.: A configurable statistical lossless compression core based on variable order Markov modeling and arithmetic coding. IEEE Trans. Comput. 54(11), 1345–1359 (2005)

    Article  Google Scholar 

  • Oliver, N., Horvitz, E., Garg, A.: Layered representations for human activity recognition. In Proceedings of the 4th IEEE International Conference on Multimodal Interfaces (ICMI 2002), pp. 3–8. IEEE Computer Society, Washington (2002)

  • Pascal, J.H., Poupart, P., Boutilier, C., Mihailidis, A.: Semi-supervised learning of a POMDP model of patient-caregiver interactions. In: Proceedings of IJCAI Workshop on Modeling Others from Observations, Edinburgh, pp. 101–110 (2005)

  • Philipose M., Fishkin K.P., Perkowitz M., Patterson D.J., Fox D., Kautz H., Hahnel D.: Inferring activities from interactions with objects. Pervasive Comput. Mag. 3(4), 10–17 (2004)

    Google Scholar 

  • Pynadath D.V., Wellman M.P.: Probabilistic state-dependent grammars for plan recognition. In Proceedings of the 16th Conference on Uncertainty in Artificial Intelligence (UAI ’00), Stanford, pp. 507–514 (2000)

  • Rabin M.O.: Probabilistic automata. Inform. Control 6(3), 230–245 (1963)

    Article  Google Scholar 

  • Rich C., Sidner C.L., Lesh N.: COLLAGEN: applying collaborative discourse theory to human-computer interaction. AI Mag. 22(4), 15–26 (2001)

    Google Scholar 

  • Rissanen J.: A universal data compression system. IEEE Trans. Inform. Theory 29(5), 656–663 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  • Ron D., Singer Y., Tishby N.: The power of amnesia: learning probabilistic automata with variable memory length. Mach. Learn. 25(2–3), 117–149 (1996)

    Article  MATH  Google Scholar 

  • Shmilovici A., Ben-Gal I.: Using a VOM model for reconstructing potential coding regions in est sequences. Comput. Stat. 22(1), 49–69 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Soller A.: Adaptive support for distributed collaboration. In: Brusilovsky, P., Kobsa, A., Neijl, W. (eds) The Adaptive Web., pp. 507–514. Springer, Berlin (2007)

    Google Scholar 

  • Spirtes P., Glymour C., Scheines R.: Causation, Prediction, and Search. 2nd edn. The MIT Press, Cambridge (2000)

    Google Scholar 

  • Stumpf, S., Bao, X., Dragunov, A., Dietterich, T.G., Herlocker, J., Johnsrude, K., Li, L., Shen, J.: Predicting user tasks: I know what you’re doing! In: 20th National Conference on Artificial Intelligence (AAAI-05), Workshop on Human Comprehensible Machine Learning, Pittsburgh (2005)

  • Whitworth B.: Polite computing. Behav. Inform. Technol. 24(5), 353–363 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo G. Armentano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Armentano, M.G., Amandi, A.A. Modeling sequences of user actions for statistical goal recognition. User Model User-Adap Inter 22, 281–311 (2012). https://doi.org/10.1007/s11257-011-9103-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11257-011-9103-y

Keywords

Navigation