Skip to main content
Log in

A Model of Perceptual Task Effort for Bar Charts and its Role in Recognizing Intention

  • Original Paper
  • Published:
User Modeling and User-Adapted Interaction Aims and scope Submit manuscript

Abstract

This paper presents a model of perceptual task effort for use in hypothesizing the message that a bar chart is intended to convey. It presents our rules, based on research by cognitive psychologists, for estimating perceptual task effort, and discusses the results of an eye tracking experiment that demonstrates the validity of our model. These rules comprise a model that captures the relative difficulty that a viewer would have performing one perceptual task versus another on a specific bar chart. The paper outlines the role of our model of relative perceptual task effort in recognizing the intended message of an information graphic. Potential applications of this work include using this message to provide (1) a more complete representation of the content of the document to be used for searching and indexing in digital libraries, and (2) alternative access to the information graphic for visually impaired users or users of low-bandwidth environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • ACT-R: ‘The ACT-R Home Page’. http://act-r.psy.cmu.edu/ (retrieved on May 18th, 2004)

  • Bertin J. (1983). Semiology of Graphics. The University of Wisconsin Press, Madison, WI

    Google Scholar 

  • Boff K.R., Lincoln J.E. (1988). Engineering Data Compendium: Human Perception and Performance. AAMRL, Wright-Patterson AFB, OH

    Google Scholar 

  • Carberry S. (2001). Techniques for plan recognition. User Model. User-Adap. Interact. 11(1–2):31–48

    Article  MATH  Google Scholar 

  • Card S.K., Moran T.P., Newell A. (1983). The Psychology of Human-Computer Interaction. Lawrence Erlbaum Associates Inc., Hillsdale, NJ

    Google Scholar 

  • Cavanaugh J.P. (1972). Relation between the intermediate memory span and the memory search rate. Psychol. Rev. 79:525–530

    Article  Google Scholar 

  • Charniak E., Goldman R.P. (1993). A Bayesian model of plan recognition. Artif. Intell. 64(1):53–79

    Article  Google Scholar 

  • Clark H. (1996). Using Language. Cambridge University Press, Cambridge

    Google Scholar 

  • Cleveland W.S. (1985). The Elements of Graphing Data. Chapman and Hall, New York

    Google Scholar 

  • Corio, M., Lapalme, G.: Generation of texts for information graphics. In: Proceedings of the 7th European Workshop on Natural Language Generation EWNLG’99. pp. 49–58 (1999)

  • Druzdzel M.J., van der Gaag L.C. (2000). Building probabilistic networks: Where do the numbers come from?. IEEE Trans. Knowl. Data. Eng. 12:481–486

    Article  Google Scholar 

  • Elzer, S., Carberry, S., Zukerman, I., Chester, D., Green, N., Demir, S.: A probabilistic framework for recognizing intention in information graphics. In: Proceedings of the Nineteenth International Joint Conference on Artificial Intelligence (IJCAI). pp. 1042–1047 (2005)

  • EPIC: The brain, cognition, and action laboratory: EPIC. http://www.umich.edu/~bcalab/epic.html (retrieved on May 18th, 2004)

  • Futrelle R. (1999). Summarization of diagrams in documents. In: Mani I., Maybury M. (eds) Advances in Automated Text Summarization. MIT Press, Cambridge, pp. 403–421

    Google Scholar 

  • Futrelle, R., Nikolakis, N.: Efficient analysis of complex diagrams using constraint-based parsing. In: Proceedings of the Third International Conference on Document Analysis and Recognition. pp.~782–790 (1995)

  • Green N., Carenini G., Kerpedjiev S., Mattis J., Moore J., Roth S. (2004). Autobrief: an experimental system for the automatic generation of briefings in integrated text and information graphics. Int. J. Hum-Comp. Stud. 61(1):32–70

    Article  Google Scholar 

  • Grice H.P. (1969). Utterer’s meaning and intentions. Philos. Rev. 78:147–177

    Article  Google Scholar 

  • Hollands J.G., Spence I. (2001). The discrimination of graphical elements. Appl. Cogn. Psychol. 15:413–431

    Article  Google Scholar 

  • Iverson G., Gergen M. (1997). Statistics: The Conceptual Approach. Springer-Verlag, New York

    Google Scholar 

  • John B.E., Newell A. (1990). Toward an engineering model of stimulus response compatibility. In: Gilmore R.W., Reeve T.G. (eds) Stimulus-Response Compatibility: An Integrated Approach. North-Holland, New York, pp. 107–115

    Google Scholar 

  • Kerpedjiev, S., Roth, S.F.: Mapping communicative goals into conceptual tasks to generate graphics in discourse. In: Proceedings of Intelligent User Interfaces. pp. 157–164 (2000)

  • Kosslyn S. (1994). Elements of Graph Design. W. H. Freeman and Company, NY

    Google Scholar 

  • Kosslyn S.M. (1983). Ghosts in the Mind’s Machine. Norton, New York

    Google Scholar 

  • Kosslyn S.M. (1989). Understanding charts and graphs. Appl. Cogn. Psychol. 3:185–226

    Article  Google Scholar 

  • Larkin J.H., Simon H.A. (1987). Why a diagram is (sometimes) worth a thousand words. Cogn. Sci. 11, 65–99

    Article  Google Scholar 

  • Lohse G.L. (1993). A cognitive model for understanding graphical perception. Hum-Comp. Interact. 8:353–388

    Article  Google Scholar 

  • Pearl J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann Publishers, CA

    Google Scholar 

  • Peebles D., Cheng P.C.-H. (2003). Modeling the effect of task and graphical representation on response latency in a graph reading task. Hum. Factors. 45:28–46

    Article  Google Scholar 

  • Perrault C.R., Allen J.F. (1980). A plan-based analysis of indirect speech acts. Am. J. Comput. Ling. 6(3–4):167–182

    Google Scholar 

  • Pomerantz, J.R., Kubovy, M.: Theoretical approaches to perceptual organization. In: Boff, K.R., Kaufman, L., Thomas, J.P. (eds.) Handbook of Perception and Human Performance, pp.36.1–36.46. Wiley, New York (1986)

  • Russo J.E. (1978). Adaptation of cognitive processes to eye movement systems. In: Senders J.W., Fisher D.F., Monty R.A. (eds) Eye Movements and Higher Psychological Functions. Lawrence Erlbaum Associates Inc., Hillsdale, NJ

    Google Scholar 

  • Shah P. (2002). Graph comprehension: the role of format, content, and individual differences. In: Anderson M., Meyer M.B., Olivier P. (eds) Diagrammatic Representation and Reasoning. Springer Verlag, Berlin

    Google Scholar 

  • Shah P., Mayer R.E., Hegarty M. (1999). Graphs as aids to knowledge construction: signaling techniques for guiding the process of graph comprehension. J. Educ. Psychol. 1991(4):690–702

    Article  Google Scholar 

  • Simkin D., Hastie R. (1987). An information-processing analysis of graph perception. J. Am. Statist. Assoc. 82(398):454–465

    Article  Google Scholar 

  • Sripada, S.G., Reiter, E., Hunter, J., Yu, J.: Segmenting time series for weather forecasting. In: Macintosh, A., Ellis, R., Coenen, F. (eds.) Proceedings of ES2002. pp. 193–206 (2002)

  • Tufte E.R. (1983). The Visual Display of Quantitative Information. Graphics Press, Cheshire, CT

    Google Scholar 

  • Welford A.T. (1973). Attention, strategy, and reaction time. In: Kornblum S. (eds) Attention and Performance IV. Academic, New York, pp. 37–54

    Google Scholar 

  • Wickens C.D., Carswell C.M. (1995). The proximity compatibility principle: its psychological foundation and relevance to display design. Hum Factors 37(3):473–494

    Article  Google Scholar 

  • Yu, J., Hunter, J., Reiter, E., Sripada, S.: Recognising visual patterns to communicate gas turbine time-series data. In: Macintosh, A., Ellis, R., Coenen, F. (eds.) Proceedings of ES2002. pp. 105–118 (2002)

  • Zacks J., Tversky B. (1999). Bars and lines: a study of graphic communication. Mem Cogn 27(6):1073–1079

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephanie Elzer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elzer, S., Green, N., Carberry, S. et al. A Model of Perceptual Task Effort for Bar Charts and its Role in Recognizing Intention. User Model User-Adap Inter 16, 1–30 (2006). https://doi.org/10.1007/s11257-006-9002-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11257-006-9002-9

Keywords

Navigation