Skip to main content
Log in

Promotion of artemisinin content in Artemisia annua by overexpression of multiple artemisinin biosynthetic pathway genes

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Artemisinin, isolated from an annual herbaceous plant Artemisia annua L., is an effective antimalarial compound. However, artemisinin is accumulated in small amounts (0.01–0.1% leaf dry weight) in A. annua, resulting in constant high artemisinin price. Although metabolic engineering of partial artemisinin metabolic pathway in yeast achieved great success, artemisinin from A. annua is still the important business resource. Here, we report on the generation of transgenic plants with simultaneously overexpressing four artemisinin biosynthetic pathway genes, amorpha-4,11-diene synthase gene (ADS), amorpha-4,11-diene 12-monooxygenase gene (CYP71AV1), cytochrome P450 reductase gene (CPR), and aldehyde dehydrogenase 1 gene (ALDH1) via Agrobacterium-mediated transformation. The qRT-PCR analysis demonstrated that the introduced four genes of the transgenic lines were all highly expressed. Through high-performance liquid chromatography analysis, the artemisinin contents were increased markedly in transformants, with the highest being 3.4-fold higher compared with non-converter. These results indicate that overexpression of multiple artemisinin biosynthetic pathway genes is a promising approach to improve artemisinin yield in A. annua.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ADS:

Amorpha-4,11-diene synthase

CYP71AV1:

Cytochrome P450 monooxygenase

CPR:

Cytochrome P450 reductase

ALDH1:

Aldehyde dehydrogenase1

HPLC:

High-performance liquid chromatography

PCR:

Polymerase chain reaction

References

  • Abdin MZ, Israr M, Rehman RU, Jain SK (2003) Artemisinin, a novel antimalarial drug: biochemical and molecular approaches for enhanced production. Planta Med 69(04):289–299. doi:10.1055/s-2003-38871

    Article  CAS  PubMed  Google Scholar 

  • Aquil S, Husaini AM, Abdin MZ, Rather GM (2009) Overexpression of the HMG-CoA reductase gene leads to enhanced artemisinin biosynthesis in transgenic Artemisia annua plants. Planta Med 75(13):1453–1458. doi:10.1055/s-0029-1185775

    Article  CAS  PubMed  Google Scholar 

  • Banyai W, Kirdmanee C, Mii M, Supaibulwatana K (2010) Overexpression of farnesyl pyrophosphate synthase (FPS) gene affected artemisinin content and growth of Artemisia annua L. Plant Cell Tissue Organ Cult 103(2):255–265. doi:10.1007/s11240-010-9775-8

    Article  CAS  Google Scholar 

  • Brisibe EA, Chukwurah PN (2014) Production of Artemisinin in planta and in microbial systems need not be mutually exclusive. Artemisia annua-pharmacology and biotechnology. Springer, Berlin, pp 269–292

    Google Scholar 

  • Brown GD, Sy L-K (2004) In vivo transformations of dihydroartemisinic acid in Artemisia annua plants. Tetrahedron 60(5):1139–1159. doi:10.1016/j.tet.2003.11.070

    Article  CAS  Google Scholar 

  • Brown GD, Sy L-K (2007) In vivo transformations of artemisinic acid in Artemisia annua plants. Tetrahedron 63(38):9548–9566. doi:10.1016/j.tet2007.06.062

    Article  CAS  Google Scholar 

  • Corsello MA, Garg NK (2015) Synthetic chemistry fuels interdisciplinary approaches to the production of artemisinin. Nat Prod Rep 32(3):359–366. doi:10.1039/c4np00113c

    Article  CAS  PubMed  Google Scholar 

  • Doyle JJ (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Efferth T (2006) Molecular pharmacology and pharmacogenomics of artemisinin and its derivatives in cancer cells. Curr Drug Target 7(4):407–421. doi:10.2174/138945006776359412

    Article  CAS  Google Scholar 

  • Fu X, Shi P, Shen Q, Jiang W, Tang Y, Lv Z, Yan T, Li L, Wang G, Sun X, Tang K (2015) T-shaped trichome-specific expression of monoterpene synthase ADH2 using promoter-beta-GUS fusion in transgenic Artemisia annua L. Biotechnol Appl Biochem. doi:10.1002/bab.1440

    Google Scholar 

  • Fujisawa M, Takita E, Harada H, Sakurai N, Suzuki H, Ohyama K, Shibata D, Misawa N (2009) Pathway engineering of Brassica napus seeds using multiple key enzyme genes involved in ketocarotenoid formation. J Exp Bot 60(4):1319–1332. doi:10.1093/jxb/erp006

    Article  CAS  PubMed  Google Scholar 

  • Jiang W, Fu X, Pan Q, Tang Y, Shen Q, Lv Z, Yan T, Shi P, Li L, Zhang L, Wang G, Sun X, Tang K (2016) Overexpression of AaWRKY1 leads to an enhanced content of artemisinin in Artemisia annua. Biomed Res Int 2016:7314971. doi:10.1155/2016/7314971

    PubMed  PubMed Central  Google Scholar 

  • Kim S-H, Heo K, Chang Y-J, Park S-H, Rhee S-K, Kim S-U (2006) Cyclization mechanism of amorpha-4,11-diene synthase, a key enzyme in artemisinin biosynthesis. J Nat Prod 69(5):758–762

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Wang H, Du Z, Li G, Ye H (2011) Metabolic engineering of artemisinin biosynthesis in Artemisia annua L. Plant Cell Rep 30(5):689–694. doi:10.1007/s00299-010-0967-9

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25(4):402–408. doi:10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  • Lu X, Shen Q, Zhang L, Zhang F, Jiang W, Lv Z, Yan T, Fu X, Wang G, Tang K (2013a) Promotion of artemisinin biosynthesis in transgenic Artemisia annua by overexpressing ADS, CYP71AV1 and CPR genes. Ind Crop Prod 49:380–385. doi:10.1016/j.indcrop.2013.04.045

  • Lu X, Zhang L, Zhang F, Jiang W, Shen Q, Zhang L, Lv Z, Wang G, Tang K (2013b) AaORA, a trichome-specific AP2/ERF transcription factor of Artemisia annua, is a positive regulator in the artemisinin biosynthetic pathway and in disease resistance to Botrytis cinerea. New Phytol 198(4):1191–1202

  • Lv Z, Zhang F, Pan Q, Fu X, Jiang W, Shen Q, Yan T, Shi P, Lu X, Sun X, Tang K (2016) Branch pathway blocking in Artemisia annua is a useful method for obtaining high yield artemisinin. Plant Cell Physiol 57(3):588–602. doi:10.1093/pcp/pcw014

    Article  CAS  PubMed  Google Scholar 

  • Ma C, Wang H, Lu X, Wang H, Xu G, Liu B (2009) Terpenoid metabolic profiling analysis of transgenic Artemisia annua L. by comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry. Metabolomics 5(4):497–506. doi:10.1007/s11306-009-0170-6

    Article  CAS  Google Scholar 

  • Ma DM, Wang Z, Wang L, Alejos-Gonzales F, Sun MA, Xie DY (2015) A Genome-wide scenario of terpene pathways in self-pollinated Artemisia annua. Mol Plant 8(11):1580–1598 doi:10.1016/j.molp.2015.07.004

    Article  CAS  PubMed  Google Scholar 

  • McCormick S, Niedermeyer J, Fry J, Barnason A, Horsch R, Fraley R (1986) Leaf disc transformation of cultivated tomato (L. esculentum) using Agrobacterium tumefaciens. Plant Cell Rep 5(2):81–84. doi:10.1007/bf00269239

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15(3):473–497. doi:10.1111/j.1399-3054.1962.tb08052.x

    Article  CAS  Google Scholar 

  • Mutabingwa TK (2005) Artemisinin-based combination therapies (ACTs): best hope for malaria treatment but inaccessible to the needy! Acta Trop 95(3):305–315. doi:10.1016/j.actatropica.2005.06.009

    Article  CAS  PubMed  Google Scholar 

  • Paddon CJ, Westfall PJ, Pitera DJ, Benjamin K, Fisher K, McPhee D, Leavell MD, Tai A, Main A, Eng D, Polichuk DR, Teoh KH, Reed DW, Treynor T, Lenihan J, Jiang H, Fleck M, Bajad S, Dang G, Dengrove D, Diola D, Dorin G, Ellens KW, Fickes S, Galazzo J, Gaucher SP, Geistlinger T, Henry R, Hepp M, Horning T, Iqbal T, Kizer L, Lieu B, Melis D, Moss N, Regentin R, Secrest S, Tsuruta H, Vazquez R, Westblade LF, Xu L, Yu M, Zhang Y, Zhao L, Lievense J, Covello PS, Keasling JD, Reiling KK, Renninger NS, Newman JD (2013) High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 496(7446):528–532. doi:10.1038/nature12051

    Article  CAS  PubMed  Google Scholar 

  • Peplow M (2016) Synthetic biology’s first malaria drug meets market resistance. Nature 530(7591):389–390. doi:10.1038/530390a

    Article  PubMed  Google Scholar 

  • Ro D-K, Paradise EM, Ouellet M, Fisher KJ, Newman KL, Ndungu JM, Ho KA, Eachus RA, Ham TS, Kirby J, Chang MCY, Withers ST, Shiba Y, Sarpong R, Keasling JD (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440(7086):940–943

    Article  CAS  PubMed  Google Scholar 

  • Romero MR, Serrano MA, Vallejo M, Efferth T, Alvarez M, Marin J (2006) Antiviral effect of artemisinin from Artemisia annua against a model member of the Flaviviridae family, the bovine viral diarrhoea virus (BVDV). Planta Med 72(13):1169–1174

    Article  CAS  PubMed  Google Scholar 

  • Schramek N, Wang H, Römisch-Margl W, Keil B, Radykewicz T, Winzenhörlein B, Beerhues L, Bacher A, Rohdich F, Gershenzon J (2010) Artemisinin biosynthesis in growing plants of Artemisia annua. A 13CO2 study. Phytochemistry 71(2):179–187

    Article  CAS  PubMed  Google Scholar 

  • Shen Q, Chen YF, Wang T, Wu SY, Lu X, Zhang L, Zhang FY, Jiang WM, Wang GF, Tang KX (2012) Overexpression of the cytochrome P450 monooxygenase (cyp71av1) and cytochrome P450 reductase (cpr) genes increased artemisinin content in Artemisia annua (Asteraceae). Genet Mol Res 11(3):3298–3309. doi:10.4238/2012.September.12.13

    Article  CAS  PubMed  Google Scholar 

  • Shen Q, Lu X, Yan T, Fu X, Lv Z, Zhang F, Pan Q, Wang G, Sun X, Tang K (2016) The jasmonate-responsive AaMYC2 transcription factor positively regulates artemisinin biosynthesis in Artemisia annua. New Phytol 210(4):1269–1281. doi:10.1111/nph.13874

    Article  CAS  PubMed  Google Scholar 

  • Tang K, Shen Q, Yan T, Fu X (2014) Transgenic approach to increase artemisinin content in Artemisia annua L. Plant Cell Rep 33(4):605–615. doi:10.1007/s00299-014-1566-y

    Article  CAS  PubMed  Google Scholar 

  • Teoh KH, Polichuk DR, Reed DW, Nowak G, Covello PS (2006) Artemisia annua L. (Asteraceae) trichome-specific cDNAs reveal CYP71AV1, a cytochrome P450 with a key role in the biosynthesis of the antimalarial sesquiterpene lactone artemisinin. FEBS Lett 580(5):1411–1416

    Article  CAS  PubMed  Google Scholar 

  • Teoh KH, Polichuk DR, Reed DW, Covello PS (2009) Molecular cloning of an aldehyde dehydrogenase implicated in artemisinin biosynthesis in Artemisia annua. Botany 87(6):635–642. doi:10.1139/b09-032

    Article  CAS  Google Scholar 

  • Towler MJ, Weathers PJ (2007) Evidence of artemisinin production from IPP stemming from both the mevalonate and the nonmevalonate pathways. Plant Cell Rep 26(12):2129–2136

    Article  CAS  PubMed  Google Scholar 

  • Wallaart TE, Bouwmeester HJ, Hille J, Poppinga L, Maijers NC (2001) Amorpha-4,11-diene synthase: cloning and functional expression of a key enzyme in the biosynthetic pathway of the novel antimalarial drug artemisinin. Planta 212(3):460–465

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Park C, Wu Q, Simon JE (2005) Analysis of Artemisinin in Artemisia annua L. by LC-MS with selected ion monitoring. J Agric Food Chem 53(18):7010–7013. doi:10.1021/jf051061p

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Towler MJ, Weathers PJ (2016) Root regulation of artemisinin production in Artemisia annua: trichome and metabolite evidence. Planta 244(5):999–1010. doi:10.1007/s00425-016-2560-0

    Article  CAS  PubMed  Google Scholar 

  • WHO Malaria Policy Advisory Committee and Secretariat (2016) Malaria Policy Advisory Committee to the WHO: conclusions and recommendations of eighth biannual meeting (September 2015). Malaria J 15(1). doi:10.1186/s12936-016-1169-x

  • Xiang L, Zeng L, Yuan Y, Chen M, Wang F, Liu X, Zeng L, Lan X, Liao Z (2012) Enhancement of artemisinin biosynthesis by overexpressing dxr, cyp71av1 and cpr in the plants of Artemisia annua L. Plant Omics 5(6):503

    CAS  Google Scholar 

  • Zhang L, Ding R, Chai Y, Bonfill M, Moyano E, Oksman-Caldentey KM, Xu T, Pi Y, Wang Z, Zhang H, Kai G, Liao Z, Sun X, Tang K (2004) Engineering tropane biosynthetic pathway in Hyoscyamus niger hairy root cultures. Proc Natl Acad Sci USA 101(17):6786–6791. doi:10.1073/pnas.0401391101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Teoh KH, Reed DW, Maes L, Goossens A, Olson DJ, Ross AR, Covello PS (2008) The molecular cloning of artemisinic aldehyde Delta11(13) reductase and its role in glandular trichome-dependent biosynthesis of artemisinin in Artemisia annua. J Biol Chem 283(31):21501–21508. doi:10.1074/jbc.M803090200

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Jing F, Li F, Li M, Wang Y, Wang G, Sun X, Tang K (2009) Development of transgenic Artemisia annua (Chinese wormwood) plants with an enhanced content of artemisinin, an effective anti-malarial drug, by hairpin-RNA-mediated gene silencing. Appl Biochem Biotech 52(3):199–207

    Article  CAS  Google Scholar 

  • Zhang G, Zhang Y, Su Z (2012) CYPSI: a structure-based interface for cytochrome P450s and ligands in Arabidopsis thaliana. BMC Bioinform 13:332–332. doi:10.1186/1471-2105-13-332

    Article  Google Scholar 

  • Zhang F, Fu X, Lv Z, Lu X, Shen Q, Zhang L, Zhu M, Wang G, Sun X, Liao Z, Tang K (2015) A basic leucine zipper transcription factor, AabZIP1, connects abscisic acid signaling with artemisinin biosynthesis in Artemisia annua. Mol Plant 8(1):163–175. doi:10.1016/j.molp.2014.12.004

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by China National High-Tech “863” Program, Ministry of Science and Technology of the People’s Republic of China (Grant No. 2011AA100605), Shanghai Key Discipline Cultivation and Construction Project (Horticulture), and Shanghai Jiao Tong University Agri-Engineering Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kexuan Tang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11240_2017_1173_MOESM1_ESM.pdf

Fig. S A) The mass spectrum of artemisinin standard by UPLC-MS. B) The standard curve (log-log) of artemisinin. C) The chromatographic plot of artemisinin standard. D) The chromatographic plot of representative transgenic Line 63. [M+Na]+=305.1358 (cal. 305.1365), [2M+Na]+=587.2824 (cal. 587.2832). (PDF 163 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, P., Fu, X., Liu, M. et al. Promotion of artemisinin content in Artemisia annua by overexpression of multiple artemisinin biosynthetic pathway genes. Plant Cell Tiss Organ Cult 129, 251–259 (2017). https://doi.org/10.1007/s11240-017-1173-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-017-1173-z

Keywords

Navigation