Skip to main content
Log in

Establishment of an efficient Agrobacterium-mediated genetic transformation system in Pelargonium graveolens: an important aromatic plant

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Rose-scented geranium is an important aromatic herb, have eminent for oil. The oil of geranium commercially utilized in the perfumery, cosmetic and aromatherapy industries all over the world. It is also helpful to cure many of the diseases, since it possess antibacterial, antifungal, antioxidant, anti-inflammatory and anticancer activities. However rose scented geranium suffer from several biotic and abiotic stresses, which reduced the yield of oil. So there is need to genetically improve the geranium using biotechnological approaches. The present study demonstrates the establishment of direct regeneration and Agrobacterium tumefaciens (LBA4404) mediated transformation protocol in Pelargonium graveolens (cv. CIM-BIO 171). Different media combinations such as benzyl amino purine (BAP), kinetin, naphthalene acetic acid (NAA), and adenine di-sulphate (ADS) were standardised to induce direct regeneration in P. graveolens. The maximum regeneration frequency i.e. 90.56 ± 1.2% per explant was achieved from petiolar segments in medium containing 2.5 mg/l BAP, 0.1 mg/l NAA, 1 mg/l ADS. However, with the leaf explants only 45.94 ± 2.91% frequency was achieved. In the present study, A. tumefaciens strain LBA4404 was used carrying binary vector pBI121 with the gusA as a reporter gene and neomycin phosphotransferase II (nptII) gene as a plant selectable marker. Parameters like bacterial optical density, infection time, acetosyringone concentration and kanamycin concentration were optimised to achieve maximum transformation frequency (69.5 ± 2.3%).The putative transgenic shoots were subsequently rooted on half strength MS medium and successfully transferred to the greenhouse. The transgenic plants were characterised by gus histochemical assay, PCR analysis (nptII-786 bp and gus A- 1707 bp) and Southern hybridization tests using gusA gene probe. The regeneration as well as transformation protocol will no doubt provide the basis to decipher the insights of metabolic pathways in geranium. Also could be useful for genetic improvement, to make it more tolerant/resistant against biotic and abiotic stresses and ultimately fruitful for Indian farmers in agronomic traits like high biomass, oil content, yield and better quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

MS:

Murashige and skoog

BAP:

Benzylaminopurine

NAA:

Naphthalene acetic acid

IBA:

Indole-3-butyric acid

ADS:

Adenine di-sulphate

gusA:

β-Glucuronidase

nptII :

Neomycin phosphotransferase

X-Gluc:

5-Bromo-4-chloro-3-indolyl-β- D-glucuronide

References

  • Benazir JF, Suganthi R, Chandrika P, Mathithumilan B (2013) In vitro regeneration and transformation studies on Pelargonium graveolens (geranium)—an important medicinal and aromatic plant. J Med Chem Plant Res 7(38):2815–2822

    CAS  Google Scholar 

  • Bigos M, Wasiela M, Kalemba D, Sienkiewicz M (2012) Antimicrobial activity of geranium oil against clinical strains of Staphylococcus aureus. Molecules 17:10276–10291

    Article  CAS  PubMed  Google Scholar 

  • Boukhatem H, Djouadi L, Abdelaziz N, Khalaf H (2013) Synthesis, characterization and photocatalytic activity of CdS–montmorillonite nanocomposites. Appl Clay Sci 72:44–48

    Article  CAS  Google Scholar 

  • Chandel SCR, Pandey SK (2014) Effect of N6-benzylaminopurine and adenine sulphate in In-vitro plant regeneration of Phaseolus vulgaris L. Int J Curr Microbiol App Sci 3(12):801–806

    Google Scholar 

  • Colby SM, Meredith CP (1990) Kanamycin sensitivity of cultured tissues of Vitis. Plant Cell Rep 9:237–240

    Article  CAS  PubMed  Google Scholar 

  • Dorman HJD, Surai P, Deans SD (2000) In vitro antioxidant activity of a number of plant essential oils and phytoconstituents. J Essent Oil Res 12(2):241–248

    CAS  Google Scholar 

  • Dutt M, Grosser W (2009) Evaluation of parameters affecting Agrobacterium-mediated transformation of citrus. Plant Cell Tiss Organ Cult 98:331–340

    Article  CAS  Google Scholar 

  • Fayed SA (2009) Antioxidant and anticancer activities of Citrus reticulate (Petitgrain Mandarin) and Pelargonium graveolens (Geranium) essential oils. Res J Agric Biol Sci 5:740–747

    Google Scholar 

  • Fienberg AP, Vogelstein B (1983). A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Ann Biochem 132(1):6–13

    Article  Google Scholar 

  • Gabriela V (2011) Effect of adenine sulfate (ADSO4) on the in vitro evolution of white clover variety (Trifolium repens L.). Analele Universităţii din Oradea, Fascicula Protecţia Mediului 17:203–210

    Google Scholar 

  • Gnasekaran P, Antony JJJ, Jasim U, Sreeramanan S (2014) Agrobacterium-mediated transformation of the recalcitrant Vanda Kasem’s delight orchid with higher efficiency. Sci World J. http://dx.doi.org/10.1155/583934

  • Gupta V, Rahman LU (2014) An efficient plant regeneration and Agrobacterium-mediated genetic transformation of Tagetes erecta. Protoplasma. http://dx.doi.org/10.1007/s00709-014-0740-y

  • Gupta R, Banerjee S, Mallavarapu GR, Sharma S, Khanuja SPS, Shasany AK, Kumar S (2002) Development of a superior somaclone of rose-scented geranium and a protocol for inducing variants. Hortscience 37(4):632–636

    CAS  Google Scholar 

  • Hassanein A, Chevreau E, Dorion N (2005) Highly efficient transformation of zonal (Pelargonium x hortorum) and scented (P. capitatum) geraniums via Agrobacterium tumefaciens using leaf discs. Plant Sci 169:532–541

    Article  CAS  Google Scholar 

  • Jefferson RA (1987) Assaying chimeric genes in plants: the gus gene fusionsystem. Plant Mol Biol Rep 5:387–405

    Article  CAS  Google Scholar 

  • Khan MK, Misra P, Sharma T, Shukla PK, Ramteke PW (2014) Effect of adenine sulphate on in vitro mass propagation of Stevia rebaudiana Bertoni. J Med Plant Res 8(13):543–549

    Article  CAS  Google Scholar 

  • Khan S, Fahim N, Singh P, Rahman LU (2015) Agrobacterium tumefaciens mediated genetic transformation of Ocimum gratissimum: a medicinally important crop. Ind Crops Prod 71:138–146

    Article  CAS  Google Scholar 

  • Kohli A, Miro B, Twyman RM (2010) Transgenic integration, expression and stability in plants: Strategies for improvements. In: Kole C, Michler CH, Abbott AG, Hall TC (eds) Transgenic crop plants: principles and development. Springer, Berlin pp 201–237

    Google Scholar 

  • Krishna Raj S, Bi YM, Saxena PK (1997) Somatic embryogenesis and Agrobacterium-mediated transformation system for scented geraniums (Pelargonium sp. `Frensham’). Planta 201:434–440

    Article  CAS  Google Scholar 

  • Kumar S, Bhat V (2012) High-frequency direct plant regeneration via multiple shoot induction in the apomictic forage grass Cenchrus ciliaris L. In Vitro Cell Dev Biol Plant 48(2):241–248

    Article  Google Scholar 

  • Kumar V, Moyo M, Van Staden J (2015) Somatic embryogenesis of Pelargonium sidoides DC. Plant Cell Tiss Organ Cult 121:571. doi:10.1007/s11240-015-0726-2

    Article  Google Scholar 

  • Manfroi E, Yamazaki-Lau E, Grando MF, Roesler EA (2015) Acetosyringone, pH and temperature effects on transient genetic transformation of immature embryos of Brazilian wheat genotypes by Agrobacterium tumefaciens. Genet Mol Biol 38(4):470–476

    Article  PubMed  PubMed Central  Google Scholar 

  • Ming OC, Wen AS, Sinniah U, Xavier R, Sudramaniam S (2007) Cysteine and acetosyringone are the two important parameters in Agrobacterium mediated transformation of rose hybrid (Rose hybrid L.) cv. Nikita. J Plant Sci 2(4):387–397

    Article  CAS  Google Scholar 

  • Mishra S, Sangwan RS, Bansal S, Sangwan NS (2013) Efficient genetic transformation of Withania coagulans (Stocks) Dunal mediated by Agrobacterium tumefaciens from leaf explants of in vitro multiple shoot culture. Protoplasma 250:451–458

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Naaz A, Shahzad A, Anis M (2014) Effect of adenine sulphate interaction on growth and development of shoot regeneration and inhibition of shoot tip necrosis under in vitro condition in adult syzygium cumini L.a multipurpose tree. Appl Biochem Biotechnol 173:90–102

    Article  CAS  PubMed  Google Scholar 

  • Nameth ST, Daughtrey ML, Moorman GW, Sulzinski MA (1999) Bacterial blight of geranium: a history of diagnostic challenges. Plant Dis 83(3):204–212

    Article  Google Scholar 

  • Peterson A, Goto M, Machmuah SB, Roy BC, Sasaki M, Hirose T (2005) Extraction of essential oil from Geranium (Pelargonium graveolens) with supercritical carbon dioxide. J Chem Technol Biotechnol 81:167–172

    Article  Google Scholar 

  • Ribas AF, Dechamp E, Champion A, Bertrand B, Combes MC, Verdeil JL, Lapeyre F, Lashermes P, Etienne H (2011) Agrobacterium-mediated genetic transformation of Coffea arabica (L.) is greatly enhanced by using establishedembryogenic callus cultures. BMC Plant Biol. doi:10.1186/1471-2229-11-92

    PubMed  PubMed Central  Google Scholar 

  • Saini R, Jaiwal PK (2007) Agrobacterium tumefaciens- mediated transformation of blackgram: an assessment of factors influencing the efficacy of uidA gene transfer. Biol Plant 51(1):69–74

    Article  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Press, NY p 2.60–2.80

    Google Scholar 

  • Saxena G, Banerjee S, Rahman L, Mallavarapu GR, Sharma S, Kumar S (2000) An efficient in vitro procedure for micropropagation and generation of somaclones of rose scented Pelargonium. Plant Sci 155:133–140

    Article  CAS  PubMed  Google Scholar 

  • Sharopov FS, Zhang H, Setzer WN (2014) Composition of geranium (Pelargonium graveolens) essential oil from Tajikistan. Am J Essential Oils Nat Prod 2(2):13–16

    Google Scholar 

  • Shawl AS, Kumar T, Chishiti N, Shabir S (2006) Cultivation of rose scented geranium (Pelargonium sp.) as a cash crop in Kashmir Valley. Asian J Plant Sci 5(4):673–675

    Article  Google Scholar 

  • Shokri H, Khosravi AR, Mansouri M, Ziglari T (2011) Effects of zataria multiflora and geranium pelargonium essential oils on growth-inhibiting of some toxigenic fungi. Iran J Vet Res 12(3):247–251

    Google Scholar 

  • Subramanyam K, Rajesh M, Jaganath B, Vasuki A, Theboral J, Elayaraja D, Karthik S, Manickavasagam M, Ganapathi A (2013) Assessment of factors influencing the agrobacterium mediated in planta seed transformation of brinjal (Solanum melongena L.). Appl Biochem Biotechnol 171:450–468

    Article  CAS  PubMed  Google Scholar 

  • Twyman RM, Kohli A, Stoger E, Christou P (2002) Foreign DNA: integration and expression in transgenic plants. Genetic engineering. Setlow JK (ed) vol 24. Springer, New York, p 107–136

  • Verma RK, Yadav A, Verma RS, Rahman LU, Khan K (2013) Intercropping of aromatic crop Geranium pelargonium with Solanum tubersum for better productivity and soil health. J Environ Biol 35:1165–1171

    Google Scholar 

  • Williamson JD, Desai A, Krasnyanski SF et al (2013) Overexpression of mannitol dehydrogenase in zonal geranium confers increased resistance to the mannitol secreting fungal pathogen Botrytis cinerea. Plant Cell Tiss Organ Cult 115:367. doi:10.1007/s11240-013-0368-1

    Article  CAS  Google Scholar 

  • Yadav SK, Katikala S, Yellisetty V, Kannepalle A, Narayana JL, Maddi V, Mandapaka M, Shanker AK, Bandi V, Bharadwaja KP (2012) Optimization of Agrobacterium mediated genetic transformation of cotyledonary node explants of Vigna radiate. SpringerPlus http://www.springerplus.com/content/1/1/59

  • Zhou J, Ma G, Bunn E, Zhang X (2007) In Vitro shoot organogenesis from Pelargonium Citrosum vanleenii leaf and petiole explants. Floriculture Orna Biotech 1(2):147–149

    Google Scholar 

  • Zhu Q, Wu F, Ding F, Ye D, Chen Y, Li Y (2009) Agrobacterium-mediated transformation of Dioscorea zingiberensis Wright, an important pharmaceutical crop. Plant Cell Tissue Organ Cult 96:317–324

    Article  Google Scholar 

  • Zuraida AR, Mohd SMA, Ayu Nazreena O, Zamri Z (2013) Improved micropropagation of biopesticidal plant, Pelargonium radula via direct shoot regeneration. Am J Res Commun 1(1):1–12

    Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Director CSIR-CIMAP for providing necessary facilities to carrying out the research work and Dr. Ajay Kohli for editing the Manuscript. The first author also gratefully acknowledges CSIR Network Project ChemBio (BSC 203) for providing financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laiq ur Rahman.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 27 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, P., Khan, S., Kumar, S. et al. Establishment of an efficient Agrobacterium-mediated genetic transformation system in Pelargonium graveolens: an important aromatic plant. Plant Cell Tiss Organ Cult 129, 35–44 (2017). https://doi.org/10.1007/s11240-016-1153-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-016-1153-8

Keywords

Navigation