Skip to main content
Log in

Two alternative splicing variants of maize HKT1;1 confer salt tolerance in transgenic tobacco plants

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

The high-affinity potassium transporter (HKT) genes have crucial roles in the regulation of sodium and potassium transportation in many species, however little is known about maize HKT genes. In this study, we obtained two alternative splicing transcripts of ZmHKT1;1 gene. One was named as ZmHKT1;1a which has the intact coding sequence, and the other was named as ZmHKT1;1b which has a deficiency of the third exon and a retention of the second intron. The phylogenic tree analysis showed that both translation products of ZmHKT1;1a and ZmHKT1;1b belong to group I HKT proteins which prefer for Na+ transport than other cations. ZmHKT1;1a and ZmHKT1;1b showed different response to stress treatment in maize. Overexpressing ZmHKT1;1a or ZmHKT1;1b in transgenic tobacco plants conferred high salt tolerance by increasing root length and fresh weight of plants. When treated with high concentration of salt, transgenic tobacco plants manifested a trend of reduced Na+ content and increased K+ content in both shoot and root, suggesting that ZmHKT1;1 may involve in Na+ unloading and indirectly affect other transporter activity. It was also found that overexpression of ZmHKT1;1a and ZmHKT1;1b caused different expression of stress-related genes. The results in this study indicate that two alternative splicing variants of ZmHKT1;1 might be useful for the development of salt-tolerant transgenic crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Almeida P, Katschnig D, de Boer AH (2013) HKT transporters—state of the art. Int J Mol Sci 14(10):20359–20385

    Article  PubMed Central  PubMed  Google Scholar 

  • Apse MP, Aharon GS, Snedden WA, Blumwald E (1999) Salt tolerance conferred by over expression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 85:1256–1258

    Article  Google Scholar 

  • Corratgé-Faillie C, Jabnoune M, Zimmermann S, Véry A-A, Fizames C, Sentenac H (2010) Potassium and sodium transport in non-animal cells: the Trk/Ktr/HKT transporter family. Cell Mol Life Sci 67(15):2511–2532

    Article  PubMed  Google Scholar 

  • Cotsaftis O, Plett D, Shirley N, Tester M, Hrmova M (2012) A two-staged model of Na+ exclusion in rice explained by 3D modeling of HKT transporters and alternative splicing. PLoS ONE 7(7):e39865

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Diatloff E, Kumar R, Schachtman DP (1998) Site directed mutagenesis reduces the Na+ affinity of HKT1, an Na+ energized high affinity K+ transporter. FEBS Lett 432:31–36

    Article  CAS  PubMed  Google Scholar 

  • Garciadeblas B, Senn ME, Banuelos MA, Rodriguez-Navarro A (2003) Sodium transport and HKT transporters: the rice model. Plant J 34(6):788–801

    Article  CAS  PubMed  Google Scholar 

  • Golldack D, Su H, Quigley F, Kamasani UR, Munoz-Garay C, Balderas E, Popova OV, Bennett J, Bohnert HJ, Pantoja O (2002) Characterization of a HKT-type transporter in rice as a general alkali cation transporter. Plant J 31(4):529–542

    Article  CAS  PubMed  Google Scholar 

  • Graveley BR (2001) Alternative splicing: increasing diversity in the proteomic world. Trends Genet 17:100–107

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–499

    Article  CAS  PubMed  Google Scholar 

  • Hauser F, Horie T (2010) A conserved primary salt tolerance mechanism mediated by HKT transporters: a mechanism for sodium exclusion and maintenance of high K+/Na+ ratio in leaves during salinity stress. Plant Cell Environ 33(4):552–565

    Article  CAS  Google Scholar 

  • He C, Yan J, Shen G, Fu L, Holaday AS, Auld D, Blumwald E, Zhang H (2005) Expression of an Arabidopsis vacuolar sodium/proton antiporter gene in cotton improves photosynthetic performance under salt conditions and increases fiber yield in the field. Plant Cell Physiol 46:1848–1854

    Article  CAS  PubMed  Google Scholar 

  • Horie T, Hauser F, Schroeder JI (2009) HKT transporter-mediated salinity resistance mechanisms in Arabidopsis and monocot crop plants. Trends Plant Sci 14(12):660–668

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Horsch R, Fry J, Hoffman N, Eichholz D, Rogers S, Fraley R (1985) A simple and general method for transferring genes into plants. Science 227(4691):1229–1231

    Article  CAS  Google Scholar 

  • Huang S, Spielmeyer W, Lagudah ES, James RA, Platten JD, Dennis ES, Munns R (2006) A sodium transporter (HKT7) is a candidate for Nax1, a gene for salt tolerance in durum wheat. Plant Physiol 142(4):1718–1727

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Laurie S, Feeney KA, Maathuis FJ, Heard PJ, Brown SJ, Leigh RA (2002) A role for HKT1 in sodium uptake by wheat roots. Plant J 32(2):139–149

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  • Maser P, Hosoo Y, Goshima S, Horie T, Eckelman B, Yamada K, Yoshida K, Bakker EP, Shinmyo A, Oiki S, Schroeder JI, Uozumi N (2002) Glycine residues in potassium channel-like selectivity filters determine potassium selectivity in four-loop-per-subunit HKT transporters from plants. Proc Natl Acad Sci USA 99(9):6428–6433

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mian A, Oomen RJ, Isayenkov S, Sentenac H, Maathuis FJ, Very AA (2011) Over-expression of an Na+-and K+-permeable HKT transporter in barley improves salt tolerance. Plant J 68(3):468–479

    Article  CAS  PubMed  Google Scholar 

  • Mishra S, Alavilli H, Lee B, Panda SK, Sahoo L (2015) Cloning and characterization of a novel vacuolar Na+/H+ antiporter gene (VuNHX1) from drought hardy legume, cowpea for salt tolerance. Plant Cell Tissue Organ Cult 120:19–33

    Article  CAS  Google Scholar 

  • Moller IS, Tester M (2007) Salinity tolerance of Arabidopsis: a good model for cereals? Trends Plant Sci 12(12):534–540

    Article  PubMed  Google Scholar 

  • Moller IS, Gilliham M, Jha D, Mayo GM, Roy SJ, Coates JC, Haseloff J, Tester M (2009) Shoot Na+ exclusion and increased salinity tolerance engineered by cell type-specific alteration of Na+ transport in Arabidopsis. Plant Cell 21(7):2163–2178

    Article  PubMed Central  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Munns R, James RA, Xu B, Athman A, Conn SJ, Jordans C, Byrt CS, Hare RA, Tyerman SD, Tester M, Plett D, Gilliham M (2012) Wheat grain yield on saline soils is improved by an ancestral Na+ transporter gene. Nat Biotechnol 30(4):360–364

    Article  CAS  PubMed  Google Scholar 

  • Patel MK, Joshi M, Mishra A, Jha B (2015) Ectopic expression of SbNHX1 gene in transgenic castor (Ricinus communis L.) enhances salt stress by modulating physiological process. Plant Cell, Tissue Organ Cult 122:477–490

    Article  CAS  Google Scholar 

  • Platten JD, Cotsaftis O, Berthomieu P, Bohnert H, Davenport RJ, Fairbairn DJ, Horie T, Leigh RA, Lin H-X, Luan S (2006) Nomenclature for HKT transporters, key determinants of plant salinity tolerance. Trends Plant Sci 11(8):372–374

    Article  CAS  PubMed  Google Scholar 

  • Plett D, Safwat G, Gilliham M, Skrumsager Moller I, Roy S, Shirley N, Jacobs A, Johnson A, Tester M (2010) Improved salinity tolerance of rice through cell type-specific expression of AtHKT1;1. PLoS ONE 5(9):e12571

    Article  PubMed Central  PubMed  Google Scholar 

  • Ren ZH, Gao JP, Li LG, Cai XL, Huang W, Chao DY, Zhu MZ, Wang ZY, Luan S, Lin HX (2005) A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat Genet 37(10):1141–1146

    Article  CAS  PubMed  Google Scholar 

  • Rubio F, Gassmann W, Schroeder JI (1995) Sodium-driven potassium uptake by the plant potassium transporter HKT1 and mutations conferring salt tolerance. Science 270:1660–1663

    Article  CAS  PubMed  Google Scholar 

  • Rubio F, Schwarz M, Gassmann W, Schroeder JI (1999) Genetic selection of mutations in the high affinity K+ transporter HKT1 that define functions of a loop site for reduced Na+ permeability and increased Na+ tolerance. J Biol Chem 274(11):6839–6847

    Article  CAS  PubMed  Google Scholar 

  • Schachtman DP, Schroeder JI (1994) Structure and transport mechanism of a high-affinity potassium uptake transporter from higher plants. Nature 370:655–658

    Article  CAS  PubMed  Google Scholar 

  • Shukla PS, Agarwal PK, Jha B (2012) Improved salinity tolerance of Arachis hypogaea (L.) by the interaction of halotolerant plant-growth-promoting rhizobacteria. J Plant Growth Regul 31(2):195–206

    Article  CAS  Google Scholar 

  • Wang TT, Ren ZJ, Liu ZQ, Feng X, Guo RQ, Li BG, Li LG, Jing HC (2014) SbHKT1;4, a member of the high-affinity potassium transporter gene family from Sorghum bicolor, functions to maintain optimal Na+/K+ balance under Na+ stress. J Integr Plant Biol 56(3):315–332

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is financially supported by the National Basic Research Program of China (2014CB138202) and the Agricultural Science and Technology Innovation Program (ASTIP) of CAAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunjun Liu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1363 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, Z., Liu, Y., Kang, D. et al. Two alternative splicing variants of maize HKT1;1 confer salt tolerance in transgenic tobacco plants. Plant Cell Tiss Organ Cult 123, 569–578 (2015). https://doi.org/10.1007/s11240-015-0861-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-015-0861-9

Keywords

Navigation