Skip to main content
Log in

Improvement of Agrobacterium-mediated transformation frequency in multiple modern elite commercial maize (Zea mays L.) inbreds by media modifications

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

The current study describes a robust, high-frequency Agrobacterium-mediated transformation protocol suitable for multiple recalcitrant modern elite commercial maize inbreds employing media modifications with glucose, cupric sulfate and a cytokinin, 6-benzylaminopurine (BAP). An optimal combination of these three key elements in the co-cultivation, resting, and selection media resulted in 4- to 14-fold improvements in transformation frequencies at the T0 plant level of 9.7, 31.9, 9.6 and 10.0 % for PH4CN, PH12BN, PHW0V and PH17R8, respectively. Transformation frequency in PH1CP1 was also improved at the T0 tissue level from 2.5 to 8.3 %. The addition of cupric sulfate and BAP in the co-cultivation medium improved transformation frequency in all inbreds except PH4CN. The use of cupric sulfate and BAP in combination with additional glucose in the selection medium was especially important, significantly improving the transformation frequency in 3 (PH4CN, PHW0V and PH1CP1) out of 5 inbreds by increasing the proliferation of high quality regenerable tissue. It was observed that the amount/ratio of these three components needed to be optimized for each inbred. The results in this study can be applied to optimize the tissue culture response and improve transformation frequency in other recalcitrant elite commercial maize inbreds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

BAP:

6-Benzylaminopurine

GT:

Green regenerative tissue

IE:

Immature embryo

moPAT:

Maize codon-optimized phosphinothricin acetyltransferase

mPHI-T:

Modified PHI-T medium

NSS:

Non-stiff stalk

PMI:

Phosphomannose isomerase

PPT:

Phosphinothricin

QE:

Quality event

YFP:

Yellow fluorescent protein

References

  • Cho M-J, Jiang W, Lemaux PG (1998) Transformation of recalcitrant barley cultivars through improvement of regenerability and decreased albinism. Plant Sci 138:229–244

    Article  CAS  Google Scholar 

  • Cho M-J, Buchanan BB, Lemaux PG (1999) Development of transformation systems for monocotyledonous crop species and production of foreign proteins in transgenic barley and wheat seeds. In: Application of transformation technology in plant breeding. 30th Anniversary Korean Breeding Society, Suwon, Korea, November 19, pp 39–53

  • Cho M-J, Klein TM, Zhao Z-Y (2013) Methods for tissue culture and transformation of sugarcane. US patent application 2013/0055472 A1

  • Cho M-J, Wu E, Kwan J, Yu M, Banh J, Linn W, Anand A, Li Z, TeRonde S, Register JC III, Jones TJ, Zhao Z-Y (2014) Agrobacterium-mediated high-frequency transformation of an elite commercial maize (Zea mays L.) inbred line. Plant Cell Rep 33:1767–1777

    Article  CAS  PubMed  Google Scholar 

  • D’Halluin K, Bonne E, Bossut M, De Beuckeleer M, Leemans J (1992) Transgenic maize plants by tissue electroporation. Plant Cell 4:1495–1505

    Article  PubMed Central  PubMed  Google Scholar 

  • Frame BR, Drayton PR, Bagnall SV, Lewnau CJ, Bullock WP, Wilson HM, Dunwell JM, Thompson JA, Wang K (1994) Production of fertile transgenic maize plants by silicon carbide whisker-mediated transformation. Plant J 6:941–948

    Article  CAS  Google Scholar 

  • Frame BR, Shou H, Chikwamba RK, Zhang Z, Xiang C, Fonger TM, Pegg SEK, Li B, Nettleton DS, Pei D, Wang K (2002) Agrobacterium tumefaciens-mediated transformation of maize embryos using a standard binary vector system. Plant Physiol 129:13–22

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Frame BR, McMurray JM, Fonger TM, Main ML, Taylor KW, Torney FJ, Paz MM, Wang K (2006) Improved Agrobacterium-mediated transformation of three maize inbred lines using MS salts. Plant Cell Rep 25:1024–1034

    Article  CAS  PubMed  Google Scholar 

  • Fromm ME, Morrish F, Armstrong C, Williams R, Thomas J, Klein TM (1990) Inheritance and expression of chimeric genes in the progeny of transgenic maize plants. Bio/Technology 8:833–839

    Article  CAS  PubMed  Google Scholar 

  • Golovkin MV, Abraham M, Morocz S, Bottka S, Feher A, Dudits D (1993) Production of transgenic maize plants by direct DNA uptake into embryogenic protoplasts. Plant Sci 90:41–52

    Article  CAS  Google Scholar 

  • Gordon-Kamm WJ, Spencer TM, Mangano ML, Adams TR, Daines RJ, Start WG, O’Brien JV, Chambers SA, Adams WR Jr, Willetts NG, Rice TB, Mackey CJ, Krueger RW, Kausch AP, Lemaux PG (1990) Transformation of maize cells and regeneration of fertile transgenic plants. Plant Cell 2:603–618

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ha CD, Lemaux PG, Cho M-J (2001) Stable transformation of a recalcitrant Kentucky bluegrass (Poa pratensis L.) cultivar using mature seed-derived highly regenerative tissues. In Vitro Cell Dev Biol Plant 37:6–11

  • Huang X, Wei Z (2005) Successful Agrobacterium-mediated genetic transformation of maize elite inbred lines. Plant Cell Tiss Org Cult 83:187–200

    Article  Google Scholar 

  • Ishida Y, Satto H, Ohta S, Hiei Y, Komari T, Kumashiro T (1996) High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nat Biotechnol 14:745–750

    Article  CAS  PubMed  Google Scholar 

  • Ishida Y, Hiei Y, Komari T (2007) Agrobacterium-mediated transformation of maize. Nat Protoc 2(7):1614–1621

    Article  CAS  PubMed  Google Scholar 

  • Kim H-K, Lemaux PG, Buchanan BB, Cho M-J (1999) Reduction of genotype limitation in wheat (Triticum aestivum L.) transformation. In Vitro Cell Dev Biol 35(3 Part 2):43A

  • Lauer, J. 1998. The Wisconsin comparative relative maturity (CRM) system for corn. Field crops 28.31–21, http://corn.agronomy.wisc.edu/AA/A021.aspx

  • Li Y-C, Ren J, Cho M-J, Zhou S, Kim Y-B, Guo H, Wong JH, Niu H, Kim H-K, Morigasaki S, Lemaux PG, Frick OL, Yin J, Buchanan BB (2009) The level of expression of thioredoxin is linked to fundamental properties and applications of wheat seeds. Mol Plant 2:430–441

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Negrotto D, Jolley M, Beer S, Wench AR, Hansen G (2000) The use of phosphomannose-isomerase as a selectable marker to recover transgenic maize plants (Zea mays L.) via Agrobacterium transformation. Plant Cell Rep 19:798–803

    Article  CAS  Google Scholar 

  • Ombori O, Muoma JMO, Machuka J (2013) Agrobacterium-mediated genetic transformation of selected tropical inbred and hybrid maize (Zea mays L.) lines. Plant Cell Tissue Organ Cult 113:11–23

    Article  CAS  Google Scholar 

  • Sidorov V, Gilbertson L, Addae P, Duncan D (2006) Agrobacterium-mediated transformation of seedling-derived maize callus. Plant Cell Rep 25:320–328

    Article  CAS  PubMed  Google Scholar 

  • Vega JM, Yu W, Kennon AR, Chen X, Zhang ZJ (2008) Improvement of Agrobacterium-mediated transformation in Hi-II maize (Zea mays) using standard binary vectors. Plant Cell Rep 27:297–305

    Article  CAS  PubMed  Google Scholar 

  • Wan Y, Widholm JM, Lemaux PG (1995) Type-I callus as a bombardment target for generating fertile transgenic maize (Zea mays L.). Planta 196:7–14

    Article  CAS  Google Scholar 

  • Wu E, Lenderts B, Glassman K, Berezowska-Kaniewska M, Christensen H, Asmus T, Zhen S, Chu Y, Cho M-J, Zhao Z-Y (2014) Optimized Agrobacterium-mediated sorghum transformation protocol and molecular data of transgenic sorghum plants. In Vitro Cell Dev Biol Plant 50:9–18

  • Zhang S, Cho M-J, Koprek T, Bregitzer P, Yun R, Lemaux PG (1999) Genetic transformation of commercial cultivars of oat (Avena sativa L.) and barley (Hordeum vulgare L.) using in vitro shoot meristematic cultures derived from germinated seedlings. Plant Cell Rep 18:959–966

    Article  CAS  Google Scholar 

  • Zhang S, Williams-Carrier R, Lemaux PG (2002) Transformation of recalcitrant maize elite inbreds using in vitro shoot meristematic cultures induced from germinated seedlings. Plant Cell Rep 21:263–270

    Article  CAS  Google Scholar 

  • Zhao ZY, Gu W, Cai T, Tagliani LA, Hondred DA, Bond D, Krell S, Rudert ML, Bruce WB, Pierce DA (1998) Molecular analysis of T0 plants transformed by Agrobacterium and comparison of Agrobacterium-mediated transformation with bombardment transformation in maize. Maize Genet Coop Newslett 72:34–37

    Google Scholar 

  • Zhao ZY, Cai T, Tagliani L, Miller M, Wang N, Pang H, Rudert M, Schroeder S, Hondred D, Seltzer J, Pierce D (2000) Agrobacterium-mediated sorghum transformation. Plant Mol Biol 44:789–798

    Article  CAS  PubMed  Google Scholar 

  • Zhao Z, Gu W, Cai T, Tagliani L, Hondred D, Bond D, Schroeder S, Rudert M, Pierce D (2001) High throughput genetic transformation mediated by Agrobacterium tumefaciens in maize. Mol Breed 8:323–333

    Article  CAS  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myeong-Je Cho.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, MJ., Banh, J., Yu, M. et al. Improvement of Agrobacterium-mediated transformation frequency in multiple modern elite commercial maize (Zea mays L.) inbreds by media modifications. Plant Cell Tiss Organ Cult 121, 519–529 (2015). https://doi.org/10.1007/s11240-015-0721-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-015-0721-7

Keywords

Navigation