Skip to main content
Log in

Effect of MgCl2 and double concentration of Murashige and Skoog medium on in vitro plantlet and root cultures generation in halophytic grasswort Salicornia brachiata

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

An improved micropropagation protocol has been developed for halophytic grasswort Salicornia brachiata by using double concentration of Murashige and Skoog (Physiol Plant 15:473–497, 1962) medium (DMS) supplemented with plant growth regulators. Best shoot bud induction (90 %) from nodal explants was observed on DMS supplemented with 3.0 mg L−1 6-benzyl aminopurine (BAP) and 0.5 mg L−1 Zeatin with >3 shoot buds. Shoot proliferation and elongation was achieved on DMS supplemented with 1.0 mg L−1 thidiazuron (TDZ) and 1.0 mg L−1 α-naphthalene acetic acid (NAA) with multiple shoot buds after 30 days of culture. Best callus response (78 %) was observed when stem explants were cultured on DMS supplemented with 2.0 mg L−1 2, 4-dichlorophenoxyacetic acid and 0.01 mg L−1 BAP. Regeneration from the callus was achieved when callus was cultured on DMS supplemented with 0.5 mg L−1 TDZ. These shoot buds were elongated on shoot proliferation and elongation medium. Elongated shoots (5 cm) could be rooted on DMS supplemented with 0.5–1.5 mg L−1 NAA, 0.5–1.5 mg L−1 indole-3-acetic acid and 0.5–1.5 mg L−1 indole-3-butyric acid. DMS medium supplemented with 0.5 mg L−1 NAA found to be best for rooting and the addition of 20 g L−1 magnesium chloride (MgCl2) to the medium resulted in highest percentage of rooting and not with the addition of sodium chloride (NaCl). Rooted plants could be established in soil with 55 % survival. In another set of study on root culture generation, many roots initiated from explants cultured on DMS supplemented with 2.0 mg L−1 NAA. Addition of 10 g L−1 MgCl2 was highly beneficial in stimulating root initiation and proliferation as compared to NaCl.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Ana EV, Ricardo JO, Belén F, María LC (2001) Relationships between hormonal contents and the organogenic response in Pinus pinea cotyledons. Plant Physiol Biochem 39:377–384

    Article  Google Scholar 

  • Anwar F, Hanger MIB, Halil MK, Asir AN, Ismail S (2002) Analytical characterization of Salicornia bigelovii seed oil cultivated in Pakistan. J Agric Food Chem 50:4210–4214

    Article  CAS  PubMed  Google Scholar 

  • Dalmeida E, Karuppasamy RD, Ramasamy VM (2013) Antioxidant activity, total phenolics and flavonoids of Salicornia brachiata Roxb. leaf extracts (chenopodiaceae). World J Pharm Pharm Sci 2:352–366

    Google Scholar 

  • Endo T, Yamada Y (1985) Alkaloid production in cultured roots of three species of Duboisia. Phytochemistry 24:1233–1236

    Article  CAS  Google Scholar 

  • Feyissa T, Welander M, Negash L (2005) In vitro regeneration of Hagenia abyssinica (Bruce) J.F Gmel. (Rosaseae) from leaf explants. Plant Cell Rep 24:392–400

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Luis A, Bordo NY, Moreira-Dias JM, Molina RV, Guardiola JL (1999) Explant orientation and polarity determine the morphogenic response of epicotyl segments of Troyer citrange. Ann Bot 84:715–723

    Article  Google Scholar 

  • Ghosh PK, Reddy MP, Pandya JB, Patolia JS, Vaghela SM, Gandhi MR, Sanghvi RJ, Kumar VGS, Shah MT (2005) Preparation of nutrient rich salt of plant origin. US patent 6,929,809 B2 United States Patent and Trademark Office, Washington

  • Ghosh PK, Mody KH, Reddy MP, Patolia JS, Eswaran K,Shah RA,Barot BK, Gandhi MR, Mehta AR, Bhatt M, Reddy AVR (2007) Low sodium salt of botanic origin. US patent 7,208,189 B2 United States Patent and Trademark Office, Washington

  • Glenn EP, O’leary JW, Watson MC, Thompson TL, Kuehl RO (1991) Salicornia bigelovii Torr.; an oilseed Halophyte for seawater irrigation. Science 251:1065–1067

    Article  CAS  PubMed  Google Scholar 

  • Glenn EP, Brown JJ, Blumwald E (1999) Salt tolerance and crop potential of halophytes. Crit Rev Plant Sci 18:227–255

    Article  Google Scholar 

  • Greenway H, Munns R (1980) Mechanisms of salt tolerance in nonhalophytes. Ann Rev Plant Physiol 31:149–190

    Article  CAS  Google Scholar 

  • Grigoriadou K, Maloupa E (2008) Micropropagation and salt tolerance of in vitro grown Crithmum maritimum L. Plant Cell Tissue Organ Cult 94:209–217

    Article  Google Scholar 

  • Groll J, Mycock DJ, Gray VM, Laminski S (2001) Secondary somatic embryogenesis of cassava on picloram supplemented media. Plant Cell Tissue Organ Cult 65:201–210

    Article  CAS  Google Scholar 

  • Hiroshi O, Koichi W, Shunpei U (1991) In vitro morphogenetic response and distribution of endogenous plant hormones in hypocotyl segments of snapdragon (Antirrhinum majus L.). Plant Cell Rep 10:501–504

    Google Scholar 

  • Jha B, Agarwal PK, Reddy PS, Lal S, Sopory SK, Reddy MK (2009) Identification of salt-induced genes from Salicornia brachiata, an extreme halophyte through expressed sequence tags analysis. Genes Genet Syst 84:111–120

    Article  CAS  PubMed  Google Scholar 

  • Jha B, Gontia I, Hartman A (2012a) The roots of the halophyte Salicornia brachiata are a source of new halotolerant diazotrophic bacteria with plant growth promoting potential. Plant Soil 356:265–277

    Article  CAS  Google Scholar 

  • Jha B, Gontia E, Hartmann A (2012b) The roots of the halophyte Salicornia brachiata are a source of new halotolerant diazotrophic bacteria with plant growth-promoting potential. Plant Soil 356:265–277

    Article  CAS  Google Scholar 

  • Jha B, Mishra A, Jha A, Joshi M (2013) Developing transgenic Jatropha using the SbNHX1 gene from an extreme halophyte for cultivation in saline wasteland. PLoS One 12:10–13

    Google Scholar 

  • Joshi M, Mishra A, Bhavanath J (2011) NaCl plays a key role for in vitro micropropagation of Salicornia brachiata, an extreme halophyte. Ind Crops Prod 33:67–77

    Article  CAS  Google Scholar 

  • Lee CW, Glenn EP, O’Leary JW (1992) In vitro propagation of Salicornia bigelovii by shoot-tip cultures. Hort Sci 27:472

    CAS  Google Scholar 

  • Manikandan T, Neelakandan T, Usha RG (2009) Antibacterial activity of Salicornia brachiata, a halophyte. J Physiol 6:441–443

    Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria that confer resistance in tomato and pepper plants to salt stress. Plant Physiol Biochem 167:650–656

    Google Scholar 

  • Mimura T, Mimura M, Washitani-Nemoto S, Siripatanadilok S (1997) NaCl-dependent growth, ion content and regeneration of calluses initiated from the mangrove plant, Bruguiera sexangula. J Plant Res 110:31–36

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Narendra SY, Shukla PS, Jha A, Agarwal PK, Jha B (2012) The SbSOS1 gene from the extreme halophyte Salicornia brachiata enhances Na+ loading in xylem and confers salt tolerance in transgenic tobacco. BMC Plant Biol 12:188–206

    Article  Google Scholar 

  • Raghu AV, Geetha SP, Martin G, Balchandran I, Ravindra PN (2006) Direct organogenesis from leaf explants of Embelia ribes Burm—a vulnerable medicinal plant. J For Res 11:57–60

    Article  Google Scholar 

  • Raposo MFJ, Morais RMSC (2014) Micropropagation of the Halophyte Sarcocornia fruticosa (L.) AJ Scott. J Basic App Sci 10:53–59

    Article  Google Scholar 

  • Rathod MR, Shethia BD, Pandya JB, Ghosh PK, Dodiya PJ, Srivastava BS, Srivastava R, Srivastava A, Chaturvedi V (2008) Herbal extracts of Salicornia species, process of preparation thereof, use thereof against tuberculosis. US 7442393 B2

  • Rathod MR, Shethia BD, Pandya JB, Ghosh PK, Dodia PJ, Srivastava BS, Srivastava R, Srivastava A, Chaturvedi V, Vairmani M (2011) Antitubercular extracts of Salicornia brachiata. US patnet 7,989,004 B2 United States Patent and Trademark Office, Washington

  • Reddy MP (2009) Bromide tolerance in Salicornia brachiata Roxb, an obligate halophyte. Water Air Soil Pollut 196:151–160

    Article  CAS  Google Scholar 

  • Shi XL, Han HP, Shi WL, Li YX (2006) NaCl and TDZ are two key factors for the improvement of in vitro regeneration rate of Salicornia europaea L. J Integr Plant Biol 48:185–1189

    Article  Google Scholar 

  • Singh A, Reddy MP, Chikara J (2011) Shoot regeneration from petiole explants of Simmondsia chinensis (link) Schneider. J Hort Sci Biotech 86:153–158

    CAS  Google Scholar 

  • Singh N, Mishra A, Jha B (2014) Over-expression of the peroxisomal ascorbate peroxidase (SbpAPX) gene cloned from halophyte Salicornia brachiata confers salt and drought stress tolerance in transgenic tobacco. Mar Biotechnol 16:321–332

    Article  CAS  PubMed  Google Scholar 

  • Sreekumar S, Seeni S, Pushpangadan P (1998) Production of 2-hydroxy 4-methoxy benzaldehyde using root cultures of Hemidesmus indicus. Biotechnol Lett 20:631–635

    Article  CAS  Google Scholar 

  • Ventura Y, Wuddineh WA, Myrzabayeva M, Alikulov Z, Khozin-Goldberg I, Shpigel M, Samocha TM, Sagi M (2011) Effect of seawater concentration on the productivity and nutritional value of annual Salicornia and perennial halophytes as leafy vegetable crops. Sci Hortic 128:189–196

    Article  CAS  Google Scholar 

  • Yamamoto R, Kawana Y, Minagawa R, Hamako Sasamoto (2011) Effects of sea salts on induction of cell proliferation in liquid cultures of mangrove plants, Sonneratia caseolaris and S. alba. Am J Plant Sci 2:35–42

    Article  CAS  Google Scholar 

  • Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6:66–71

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

CSIR-CSMCRI Communication No. 135 (as provided by BDIM). The financial support received from CSIR, New Delhi, India (Empower project OLP0058) is thankfully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aneesha Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, A., Jani, K., Kumari, P. et al. Effect of MgCl2 and double concentration of Murashige and Skoog medium on in vitro plantlet and root cultures generation in halophytic grasswort Salicornia brachiata . Plant Cell Tiss Organ Cult 120, 563–570 (2015). https://doi.org/10.1007/s11240-014-0622-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-014-0622-1

Keywords

Navigation