Skip to main content
Log in

Enhanced production of hairy root metabolites using microbubble generator

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Previously, increased partitioning of the natural product nicotine from tobacco hairy roots into the culture media was achieved by altering the expression of the nicotine uptake permease gene. The present study demonstrated that further increases in nicotine yield in the media were attained by using surfactant-stabilized microbubbles. Compared to other non-ionic surfactants (Tween 20 and Tween 80) and the ionic surfactant SDS, Triton X-100 (TX100) both increased total nicotine production and exudation into the hairy root culture media. In comparison to surfactant-free medium, TX100 at 10, 25, and 50 mg l−1 did not show strong inhibition of hairy root growth. At 4,000 rpm shear speed, microbubbles stabilized by 10, 25, and 50 mg l−1 TX100 had k L a of 22.3, 36.2, and 44.1 h−1 in Gamborg’s B5 medium, respectively, in comparison to 16.4 h−1 with conventional air sparging. In a 1-l bioreactor, microbubbles stabilized by TX100 were applied to hairy roots after the inoculated root tips were self-immobilized by branching. With microbubble dispersion, dissolved oxygen rapidly increased from 60 to 85 %, and hairy root growth rate increased. Nicotine accumulation in culture medium with microbubbles reached 146 mg l−1 after 30 days cultivation. These results show that combining genetic modification with surfactant-stabilized microbubble dispersion can substantially increase levels of nicotine in the media of hairy root cultures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

MBD:

Microbubble dispersion

NUP:

Nicotine uptake permease

TX100:

Triton X-100

vvm:

Volume of gas per volume of liquid per minute

References

  • Baldwin IT (1988) Damage-induced alkaloids in tobacco: pot-bound plants are not inducible. J Chem Ecol 14:1113–1120

    Article  CAS  PubMed  Google Scholar 

  • Boitel-Conti M, Gontier E, Laberche JC, Ducrocq C, Sangwan-Norreel BS (1995) Permeabilization of Datura innoxia hairy roots for release of stored tropane alkaloids. Planta Med 61:287–290

    Article  CAS  PubMed  Google Scholar 

  • Boitel-Conti M, Gontier E, Laberche JC, Ducrocq C, Sangwan-Norreel BS (1996) Inducer effect of Tween 20 permeabilization treatment used for release of stored tropane alkaloids in Datura innoxia Mill. hairy root cultures. Plant Cell Rep 16:241–244

    CAS  PubMed  Google Scholar 

  • Bredwell MD, Telgenhoff MD, Worden RM (1995) Formation and coalescence properties of microbubbles. Appl Biochem Biotechnol 51:501–509

    Article  Google Scholar 

  • Brodelius P, Pedersen H (1993) Increasing secondary metabolite production in plant cell culture by redirecting transport. Trends Biotechnol 11:30–36

    Article  CAS  PubMed  Google Scholar 

  • Cai ZZ, Kastell A, Knorr D, Smetanska I (2012) Exudation: an expanding technique for continuous production and release of secondary metabolites from plant cell suspension and hairy root cultures. Plant Cell Rep 31:461–477

    Article  CAS  PubMed  Google Scholar 

  • Chilton MD, Tepfer DA, Petit A, David C, Casse-Delbart F, Tempe J (1982) Agrobacterium rhizogenes inserts T-DNA into the genomes of the host plant root cells. Nature 295:432–434

    Article  CAS  Google Scholar 

  • Dawson RF (1942a) Accumulation of nicotine in reciprocal grafts of tomato and tobacco. Am J Bot 29:66–71

    Article  CAS  Google Scholar 

  • Dawson RF (1942b) Nicotine synthesis in excised tobacco roots. Am J Bot 29:813–815

    Article  CAS  Google Scholar 

  • Dawson RF, Solt ML (1959) Estimated contributions of root and shoot to the nicotine content of the tobacco plant. Plant Physiol 34:656–661

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dehghan E, Hakkinen ST, Oksman-Caldentey KM, Ahmadi FS (2012) Production of tropane alkaloids in diploid and tetraploid plants and in vitro hairy root cultures of Egyptian henbane (Hyoscyamus muticus L.). Plant Cell Tiss Organ Cult 110:35–44

    Article  CAS  Google Scholar 

  • Flores HE, Vivanco JM, Loyola-Vargas VM (1999) ‘Radicle’ biochemistry: the biology of root-specific metabolism. Trends Plant Sci 4:220–226

    Article  PubMed  Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158

    Article  CAS  PubMed  Google Scholar 

  • Goossens A, Hakkinen ST, Laakso I, Seppanen-Laakso T, Biondi S, De Sutter V, Lammertyn F, Nuutila AM, Soderlund H, Zabeau M, Inze D, Oksman-Caldentey KM (2003) A functional genomics approach toward the understanding of secondary metabolism in plant cells. Proc Natl Acad Sci USA 100:8595–8600

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Green KD, Thomas NH, Callow JA (1992) Product enhancement and recovery from transformed root cultures of Nicotiana glauca. Biotechnol Bioeng 39:195–202

    Article  CAS  PubMed  Google Scholar 

  • Guillon S, Tremouillaux-Guiller J, Pati PK, Rideau M, Gantet P (2006) Hairy root research: recent scenario and exciting prospects. Curr Opin Plant Biol 9:341–346

    Article  CAS  PubMed  Google Scholar 

  • Hamill JD, Parr AJ, Robins RJ, Rhodes MJC (1986) Secondary product formation by cultures of Beta vulgaris and Nicotiana rustica transformed with Agrobacterium rhizogenes. Plant Cell Rep 5:111–114

    Article  CAS  PubMed  Google Scholar 

  • Hensirisak P, Parasukulsatid P, Agblevor FA, Cundiff JS, Velander WH (2002) Scale-up of microbubble dispersion generator for aerobic fermentation. Appl Biochem Biotechnol 101:211–227

    Article  CAS  PubMed  Google Scholar 

  • Hildreth SB, Gehman EA, Yang HB, Lu RH, Ritesh KC, Harich KC, Yu S, Lin JS, Sandoe JL, Okumoto S, Murphy AS, Jelesko JG (2011) Tobacco nicotine uptake permease (NUP1) affects alkaloid metabolism. Proc Natl Acad Sci USA 108:18179–18184

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Isman MB (2006) Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu Rev Entomol 51:45–66

    Article  CAS  PubMed  Google Scholar 

  • Kanokwaree K, Doran PM (1998) Application of membrane tubing aeration and perfluorocarbon to improve oxygen delivery to hairy root cultures. Biotechnol Prog 14:479–486

    Article  CAS  PubMed  Google Scholar 

  • Kim OT, Yoo NH, Kim GS, Kim YC, Bang KH, Hyun DY, Kim SH, Kim MY (2012) Stimulation of Rg3 ginsenoside biosynthesis in ginseng hairy roots elicited by methyl jasmonate. Plant Cell Tiss Organ Cult 112:87–93

    Article  Google Scholar 

  • Kircher HW, Lieberman FV (1967) Toxicity of tobacco smoke to the spotted alfalfa aphid Therioaphis maculata (Buckton). Nature 215:97–98

    Article  CAS  PubMed  Google Scholar 

  • Larsen WA, Hsu JT, Flores HE, Humphrey AE (1993) A study of nicotine release from tobacco hairy roots by transient technique. Biotechnol Tech 7:557–562

    Article  CAS  Google Scholar 

  • Mabley J, Gordon S, Pacher P (2011) Nicotine exerts an anti-inflammatory effect in a murine model of acute lung injury. Inflammation 34:231–237

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rhodes MJC, Hilton M, Parr AJ, Hamill JD, Robins RJ (1986) Nicotine production by hairy root cultures of Nicotiana rustica - fermentation and product recovery. Biotechnol Lett 8:415–420

    Article  CAS  Google Scholar 

  • Richardson HH, Busbey RL (1937) Laboratory apparatus for fumigation with low concentrations of nicotine, with studies on aphids. J Econ Entomol 30:576–583

    CAS  Google Scholar 

  • Saitoh F, Noma M, Kawashima N (1985) The alkaloid contents of sixty Nicotiana species. Phytochemistry 24:477–480

    Article  CAS  Google Scholar 

  • Sevon N, Oksman-Caldentey KM (2002) Agrobacterium rhizogenes-mediated transformation: root cultures as a source of alkaloids. Planta Med 68:859–868

    Article  CAS  PubMed  Google Scholar 

  • Shanks JV, Morgan J (1999) Plant “hairy root” culture. Curr Opin Biotechnol 10:151–155

    Article  CAS  PubMed  Google Scholar 

  • Shuler ML, Kargi F (2002) Bioprocess engineering: basic concepts, 2nd edn. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Sim SJ, Chang HN, Liu JR, Jung KH (1994) Production and secretion of indole alkaloids in hairy root cultures of Catharanthus roseus: effects of in situ adsorption, fungal elicitation and permeabilization. J Ferment Bioeng 78:229–234

    Article  CAS  Google Scholar 

  • Smith FF, Goodhue LD (1943) Toxicity of nicotine aerosols to the green peach aphid, under greenhouse conditions. J Econ Entomol 36:911–914

    CAS  Google Scholar 

  • Solt ML (1957) Nicotine production and growth of excised tobacco root cultures. Plant Physiol 32:480–484

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Syklowska-Baranek K, Pietrosiuk A, Gawron A, Kawiak A, Lojkowska E, Jeziorek M, Chinou I (2012) Enhanced production of antitumour naphthoquinones in transgenic hairy root lines of Lithospermum canescens. Plant Cell Tiss Organ Cult 108:213–219

    Article  CAS  Google Scholar 

  • Thimmaraju R, Bhagyalakshmi N, Narayan MS, Ravishankar GA (2003) Food-grade chemical and biological agents permeabilize red beet hairy roots, assisting the release of betalaines. Biotechnol Prog 19:1274–1282

    Article  CAS  PubMed  Google Scholar 

  • Weber J, Agblevor FA (2005) Microbubble fermentation of Trichoderma reesei for cellulase production. Process Biochem 40:669–676

    Article  CAS  Google Scholar 

  • Willmitzer L, Sanchez-Serrano J, Buschfeld E, Schell J (1982) DNA from Agrobacterium rhizogenes in transferred to and expressed in axenic hairy root plant tissues. Mol Gen Genet 186:16–22

    Article  CAS  Google Scholar 

  • Xu QY, Nakajima M, Ichikawa S, Nakamura N, Shiina T (2008) A comparative study of microbubble generation by mechanical agitation and sonication. Innov Food Sci Emerg Technol 9:489–494

    Article  Google Scholar 

  • Yu SX, Doran PM (1994) Oxygen requirements and mass transfer in hairy-root culture. Biotechnol Bioeng 44:880–887

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Li ZJ, Agblevor FA (2005) Microbubble fermentation of recombinant Pichia pastoris for human serum albumin production. Process Biochem 40:2073–2078

    Article  CAS  Google Scholar 

  • Zhang HC, Liu JM, Chen HM, Gao CC, Lu HY, Zhou H, Li Y, Gao SL (2011) Up-regulation of licochalcone A biosynthesis and secretion by Tween 80 in hairy root cultures of Glycyrrhiza uralensis Fisch. Mol Biotechnol 47:50–56

    Article  PubMed  Google Scholar 

  • Zhao B, Agblevor FA, KC R, Jelesko JG (2013) Enhanced production of the alkaloid nicotine in hairy root cultures of Nicotiana tabacum L. Plant Cell Tiss Organ Cult 113:121–129

    Google Scholar 

Download references

Acknowledgments

This work was supported by the United States Department of Agriculture NIFA award 2009-34602-20015 to the Virginia Tech Biodesign and Bioprocessing Research Center, and the USTAR Synthetic Bioproducts Center.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bo Zhao or Foster A. Agblevor.

Additional information

Bo Zhao and Foster A. Agblevor are co-communicating authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 26 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, B., Agblevor, F.A. & Jelesko, J.G. Enhanced production of hairy root metabolites using microbubble generator. Plant Cell Tiss Organ Cult 117, 157–165 (2014). https://doi.org/10.1007/s11240-014-0428-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-014-0428-1

Keywords

Navigation