Skip to main content

Advertisement

Log in

Sequential Bayesian inference in hidden Markov stochastic kinetic models with application to detection and response to seasonal epidemics

  • Published:
Statistics and Computing Aims and scope Submit manuscript

Abstract

We study sequential Bayesian inference in stochastic kinetic models with latent factors. Assuming continuous observation of all the reactions, our focus is on joint inference of the unknown reaction rates and the dynamic latent states, modeled as a hidden Markov factor. Using insights from nonlinear filtering of continuous-time jump Markov processes we develop a novel sequential Monte Carlo algorithm for this purpose. Our approach applies the ideas of particle learning to minimize particle degeneracy and exploit the analytical jump Markov structure. A motivating application of our methods is modeling of seasonal infectious disease outbreaks represented through a compartmental epidemic model. We demonstrate inference in such models with several numerical illustrations and also discuss predictive analysis of epidemic countermeasures using sequential Bayes estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Algorithm 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Algorithm 2
Fig. 7

Similar content being viewed by others

Notes

  1. The usual H3N1 strain was also present that year and hence the time series effectively combines two distinct outbreaks.

  2. As stated by Grassly and Fraser (2006) “despite the near ubiquity of this phenomenon [seasonality], the causes and consequences of seasonal patterns of incidence are poorly understood”.

References

  • Amrein, M., Künsch, H.: Rate estimation in partially observed Markov jump processes with measurement errors. Stat. Comput. 22(2), 513–526 (2012)

    Article  MathSciNet  Google Scholar 

  • Andersson, H., Britton, T.: Stochastic Epidemic Models and Their Statistical Analysis. Lecture Notes in Statistics, vol. 151. Springer, New York (2000)

    MATH  Google Scholar 

  • Andrieu, C., Doucet, A., Holenstein, R.: Particle Markov chain Monte Carlo methods. J. R. Stat. Soc. B 72(3), 269–342 (2010)

    Article  MathSciNet  Google Scholar 

  • Ball, F., Neal, P.: A general model for stochastic SIR epidemics with two levels of mixing. Math. Biosci. 180, 73–102 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  • Bellomy, A.: Influenza surveillance activities local update report. Technical report, Santa Barbara County Public Health Department (2011) http://www.countyofsb.org/phd/epi.aspx?id=23610&ekmensel=15074a7f_1152_1272_23610_1

  • Boys, R.J., Wilkinson, D.J., Kirkwood, T.B.: Bayesian inference for a discretely observed stochastic kinetic model. Stat. Comput. 18(2), 125–135 (2008)

    Article  MathSciNet  Google Scholar 

  • Cappé, O., Moulines, E., Rydén, T.: Inference in Hidden Markov Models. Springer Series in Statistics. Springer, New York (2005)

    MATH  Google Scholar 

  • Carvalho, C.M., Johannes, M., Lopes, H.F., Polson, N.: Particle learning and smoothing. Stat. Sci. 25, 88–106 (2010)

    Article  MathSciNet  Google Scholar 

  • Carvalho, C.M., Johannes, M., Lopes, H.F., Polson, N.: Particle learning for sequential Bayesian computation. Bayesian Stat. 9, 317–360 (2011)

    MathSciNet  Google Scholar 

  • Cauchemez, S., Ferguson, N.: Likelihood-based estimation of continuous-time epidemic models from time-series data: application to measles transmission in London. J. R. Soc. Interface 5(25), 885–897 (2008)

    Article  Google Scholar 

  • Chib, S.: Calculating posterior distributions and modal estimates in Markov mixture models. J. Econom. 75(1), 79–97 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  • Chopin, N., Jacob, P., Papaspiliopoulos, O.: SMC^2: a sequential Monte Carlo algorithm with particle Markov chain Monte Carlo updates. J. R. Stat. Soc. B 75(3), 397–426 (2013). doi:10.1111/j.1467-9868.2012.01046.x

    Article  MathSciNet  Google Scholar 

  • Chowell, G., Viboud, C., Wang, X., Bertozzi, S., Miller, M.: Adaptive vaccination strategies to mitigate pandemic influenza: Mexico as a case study. PLoS ONE 4(12), e8164 (2009)

    Article  Google Scholar 

  • Cintron-Arias, A., Castillo-Chavez, C., Bettencourt, L., Lloyd, A., Banks, H.: The estimation of the effective reproductive number from disease outbreak data. Math. Biosci. Eng. 6(2), 261–282 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  • Doucet, A., de Freitas, N., Gordon, N. (eds.): Sequential Monte Carlo Methods in Practice. Statistics for Engineering and Information Science. Springer, New York (2001)

    MATH  Google Scholar 

  • Dukic, V., Lopes, H., Polson, N.: Tracking epidemics with Google Flu Trends data and a state-space SEIR model. J. Am. Stat. Assoc. 107(500), 1410–1426 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  • Dureau, J., Kalogeropoulos, K., Baguelin, M.: Capturing the time-varying drivers of an epidemic using stochastic dynamical systems (2012). arXiv:1203.5950

  • Dushoff, J., Plotkin, J., Levin, S., Earn, D.: Dynamical resonance can account for seasonality of influenza epidemics. Proc. Natl. Acad. Sci. USA 16, 915 (2004)

    Google Scholar 

  • Fearnhead, P.: Markov chain Monte Carlo, sufficient statistics, and particle filters. J. Comput. Graph. Stat. 11(4), 848–862 (2002)

    Article  MathSciNet  Google Scholar 

  • Gilks, W.R., Berzuini, C.: Following a moving target: Monte Carlo inference for dynamic Bayesian models. J. R. Stat. Soc. B 63, 127–146 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  • Golightly, A., Wilkinson, D.: Bayesian parameter inference for stochastic biochemical network models using particle Markov chain Monte Carlo. Interface Focus 1(6), 807–820 (2011)

    Article  Google Scholar 

  • Golightly, A., Wilkinson, D.J.: Bayesian sequential inference for stochastic kinetic biochemical network models. J. Comput. Biol. 13(3), 838–851 (2006)

    Article  MathSciNet  Google Scholar 

  • Gordon, N.J., Salmond, D.J., Smith, A.F.M.: Novel approach to nonlinear/non-Gaussian Bayesian state estimation. In: IEE Proceedings Part F: Communications, Radar and Signal Processing, vol. 140, pp. 107–113 (1993)

    Google Scholar 

  • Grassly, N., Fraser, C.: Seasonal infectious disease epidemiology. Proc. - Royal Soc., Biol. Sci. 273(1600), 2541–2550 (2006)

    Article  Google Scholar 

  • Halloran, M.E., Ferguson, N.M., Eubank, S., Longini, I.M. Jr., Cummings, D.A.T., Lewis, B., Xu, S., Fraser, C., Vullikanti, A., Germann, T.C., Wagener, D., Beckman, R., Kadau, K., Barrett, C., Macken, C.A., Burke, D.S., Cooley, P.: Modeling targeted layered containment of an influenza pandemic in the United States. Proc. Natl. Acad. Sci. USA 105(12), 4639–4644 (2008)

    Article  Google Scholar 

  • He, D., Ionides, E., King, A.: Plug-and-play inference for disease dynamics: measles in large and small populations as a case study. J. R. Soc. Interface 7(43), 271–283 (2010)

    Article  Google Scholar 

  • Jewell, C., Kypraios, T., Neal, P., Roberts, G.: Bayesian analysis for emerging infectious diseases. Bayesian Anal. 4(3), 465–496 (2009)

    Article  MathSciNet  Google Scholar 

  • Keeling, M., Rohani, P., Grenfell, B.: Seasonally forced disease dynamics explored as switching between attractors. Physica D 148(3–4), 317–335 (2001)

    Article  Google Scholar 

  • Kuske, R., Gordillo, L., Greenwood, P.: Sustained oscillations via coherence resonance in SIR. J. Theor. Biol. 245(3), 459–469 (2007)

    Article  MathSciNet  Google Scholar 

  • Lawson, A.: Bayesian Disease Mapping: Hierarchical Modeling in Spatial Epidemiology vol. 20. Chapman & Hall, London (2009)

    Google Scholar 

  • LeStrat, Y., Carrat, F.: Monitoring epidemiologic surveillance data using hidden Markov models. Stat. Med. 18, 3463–3478 (1999)

    Article  Google Scholar 

  • Liu, J., West, M.: Combined parameter and state estimation in simulation-based filtering. In: Sequential Monte Carlo Methods in Practice. Stat. Eng. Inf. Sci., pp. 197–223. Springer, New York (2001)

    Chapter  Google Scholar 

  • Ludkovski, M.: Bayesian quickest detection with observation-changepoint feedback. In: Proceedings of the 2012 Conference on Decision and Control, Maui, HI, Dec 9–12 (2012a)

    Google Scholar 

  • Ludkovski, M.: Monte Carlo methods for adaptive disorder problems. In: Carmona, R., Moral, P.D., Hu, P., Oudjane, N. (eds.) Numerical Methods in Finance, Springer Proceedings in Mathematics, vol. 12, pp. 83–112. Springer, Berlin (2012b)

    Chapter  Google Scholar 

  • Ludkovski, M., Niemi, J.: Optimal dynamic policies for influenza management. Stat. Commun. Infect. Dis. 2(1), 5 (2010) (electronic)

    MathSciNet  Google Scholar 

  • Ludkovski, M., Niemi, J.: Optimal disease outbreak decisions using stochastic simulation. In: Proceedings of the Winter Simulation Conference, WSC’11, Phoenix, AZ, pp. 3849–3858 (2011)

    Google Scholar 

  • Ludkovski, M., Sezer, S.: Finite horizon decision timing with partially observable Poisson processes. Stoch. Models 28(2), 207–247 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  • Martínez-Beneito, C., López-Quílez, A., López-Maside, A.: Bayesian Markov switching models for the early detection of influenza epidemics. Stat. Med. 27, 4455–4468 (2008)

    Article  MathSciNet  Google Scholar 

  • Merl, D., Johnson, R., Gramacy, B., Mangel, M.: A statistical framework for the adaptive management of epidemiological interventions. PLoS ONE 4(6), e5087 (2009)

    Article  Google Scholar 

  • Nåsell, I.: Stochastic models of some endemic infections. Math. Biosci. 179(1), 1–19 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  • Niemi, J.: Bayesian analysis and computational methods for dynamic modeling. Ph.D. thesis, Duke University (2009)

  • O’Neill, P.D.: A tutorial introduction to Bayesian inference for stochastic epidemic models using Markov chain Monte Carlo methods. Math. Biosci. 180, 103–114 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  • Stone, L., Olinky, R., Huppert, A.: Seasonal dynamics of recurrent epidemics. Nature 446(7135), 533–536 (2007)

    Article  Google Scholar 

  • Storvik, G.: Particle filters in state space models with the presence of unknown static parameters. IEEE Trans. Signal Process. 50(2), 281–289 (2002)

    Article  Google Scholar 

  • Tanner, M.W., Sattenspiel, L., Ntaimo, L.: Finding optimal vaccination strategies under parameter uncertainty using stochastic programming. Math. Biosci. 215(2), 144–151 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  • Wilkinson, D.J.: Stochastic Modelling for Systems Biology. Chapman & Hall, London (2006)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Ludkovski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, J., Ludkovski, M. Sequential Bayesian inference in hidden Markov stochastic kinetic models with application to detection and response to seasonal epidemics. Stat Comput 24, 1047–1062 (2014). https://doi.org/10.1007/s11222-013-9419-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11222-013-9419-z

Keywords

Navigation