Skip to main content

Advertisement

Log in

Disruption of neurogenesis by hypothalamic inflammation in obesity or aging

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

Adult neural stem cells contribute to neurogenesis and plasticity of the brain which is essential for central regulation of systemic homeostasis. Damage to these homeostatic components, depending on locations in the brain, poses threat to impaired neurogenesis, neurodegeneration, cognitive loss and energy imbalance. Recent research has identified brain metabolic inflammation via proinflammatory IκB kinase-β (IKKβ) and its downstream nuclear transcription factor NF-κB pathway as a non-classical linker of metabolic and neurodegenerative disorders. Chronic activation of the pathway results in impairment of energy balance and nutrient metabolism, impediment of neurogenesis, neural stem cell proliferation and differentiation, collectively converging on metabolic and cognitive decline. Hypothalamic IKKβ/NF-κB via inflammatory crosstalk between microglia and neurons has been discovered to direct systemic aging by inhibiting the production of gonadotropin-releasing hormone (GnRH) and inhibition of inflammation or GnRH therapy could revert aging related degenerative symptoms at least in part. This article reviews the crucial role of hypothalamic inflammation in affecting neural stem cells which mediates the neurodegenerative mechanisms of causing metabolic derangements as well as aging-associated disorders or diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Altman J, Das GD. Post-natal origin of microneurones in the rat brain. Nature. 1965;207:953–6.

    Article  PubMed  CAS  Google Scholar 

  2. Altman J. Are new neurons formed in the brains of adult mammals? Science. 1962;135:1127–8.

    Article  PubMed  CAS  Google Scholar 

  3. Cameron HA et al. Differentiation of newly born neurons and glia in the dentate gyrus of the adult rat. Neuroscience. 1993;56:337–44.

    Article  PubMed  CAS  Google Scholar 

  4. Gould E et al. Adrenal hormones suppress cell division in the adult rat dentate gyrus. J Neurosci. 1992;12:3642–50.

    PubMed  CAS  Google Scholar 

  5. Kuhn HG et al. Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation. J Neurosci. 1996;16:2027–33.

    PubMed  CAS  Google Scholar 

  6. Okano HJ et al. RB and Cdc2 expression in brain: correlations with 3H-thymidine incorporation and neurogenesis. J Neurosci. 1993;13:2930–8.

    PubMed  CAS  Google Scholar 

  7. Rakic P. Limits of neurogenesis in primates. Science. 1985;227:1054–6.

    Article  PubMed  CAS  Google Scholar 

  8. Gould E et al. Neurogenesis in the neocortex of adult primates. Science. 1999;286:548–52.

    Article  PubMed  CAS  Google Scholar 

  9. Bernier PJ et al. Newly generated neurons in the amygdala and adjoining cortex of adult primates. Proc Natl Acad Sci U S A. 2002;99:11464–9.

    Article  PubMed  CAS  Google Scholar 

  10. Gould E et al. Adult-generated hippocampal and neocortical neurons in macaques have a transient existence. Proc Natl Acad Sci U S A. 2001;98:10910–7.

    Article  PubMed  CAS  Google Scholar 

  11. Curtis MA et al. Human neuroblasts migrate to the olfactory bulb via a lateral ventricular extension. Science. 2007;315:1243–9.

    Article  PubMed  CAS  Google Scholar 

  12. Zhao C et al. Distinct morphological stages of dentate granule neuron maturation in the adult mouse hippocampus. J Neurosci. 2006;26:3–11.

    Article  PubMed  CAS  Google Scholar 

  13. Bedard A et al. Chemical characterization of newly generated neurons in the striatum of adult primates. Exp Brain Res. 2006;170:501–12.

    Article  PubMed  CAS  Google Scholar 

  14. Zhao M et al. Evidence for neurogenesis in the adult mammalian substantia nigra. Proc Natl Acad Sci U S A. 2003;100:7925–30.

    Article  PubMed  CAS  Google Scholar 

  15. Kokoeva MV et al. Neurogenesis in the hypothalamus of adult mice: potential role in energy balance. Science. 2005;310:679–83.

    Article  PubMed  CAS  Google Scholar 

  16. Li J et al. IKKbeta/NF-kappaB disrupts adult hypothalamic neural stem cells to mediate a neurodegenerative mechanism of dietary obesity and pre-diabetes. Nat Cell Biol. 2012;14:999–1012.

    Article  PubMed  CAS  Google Scholar 

  17. Cai D, Liu T. Hypothalamic inflammation: a double-edged sword to nutritional diseases. Ann N Y Acad Sci. 2011;1243:E1–E39.

    Article  PubMed  Google Scholar 

  18. Cai D. One step from prediabetes to diabetes: hypothalamic inflammation? Endocrinology. 2012;153:1010–3.

    Article  PubMed  CAS  Google Scholar 

  19. Purkayastha S et al. Uncoupling the mechanisms of obesity and hypertension by targeting hypothalamic IKK-beta and NF-kappaB. Nat Med. 2011;17:883–7.

    Article  PubMed  CAS  Google Scholar 

  20. Zhang X et al. Hypothalamic IKKbeta/NF-kappaB and ER stress link overnutrition to energy imbalance and obesity. Cell. 2008;135:61–73.

    Article  PubMed  CAS  Google Scholar 

  21. Zhang G et al. Hypothalamic programming of systemic ageing involving IKK-beta, NF-kappaB and GnRH. Nature. 2013;497:211–6.

    Article  PubMed  CAS  Google Scholar 

  22. Ekdahl CT et al. Inflammation is detrimental for neurogenesis in adult brain. Proc Natl Acad Sci U S A. 2003;100:13632–7.

    Article  PubMed  CAS  Google Scholar 

  23. Taupin P. Adult neurogenesis, neuroinflammation and therapeutic potential of adult neural stem cells. Int J Med Sci. 2008;5:127–32.

    Article  PubMed  CAS  Google Scholar 

  24. Minghetti L. Role of inflammation in neurodegenerative diseases. Curr Opin Neurol. 2005;18:315–21.

    Article  PubMed  CAS  Google Scholar 

  25. Eikelenboom P et al. The significance of neuroinflammation in understanding Alzheimer’s disease. J Neural Transm. 2006;113:1685–95.

    Article  PubMed  CAS  Google Scholar 

  26. Hensley K et al. On the relation of oxidative stress to neuroinflammation: lessons learned from the G93A-SOD1 mouse model of amyotrophic lateral sclerosis. Antioxid Redox Signal. 2006;8:2075–87.

    Article  PubMed  CAS  Google Scholar 

  27. Cai D. Neuroinflammation in overnutrition-induced diseases2597. Vitam Horm. 2013;91:195–218.

    Article  PubMed  CAS  Google Scholar 

  28. Posey KA et al. Hypothalamic proinflammatory lipid accumulation, inflammation, and insulin resistance in rats fed a high-fat diet. Am J Physiol Endocrinol Metab. 2009;296:E1003–12.

    Article  PubMed  CAS  Google Scholar 

  29. Kleinridders A et al. MyD88 signaling in the CNS is required for development of fatty acid-induced leptin resistance and diet-induced obesity. Cell Metab. 2009;10:249–59.

    Article  PubMed  CAS  Google Scholar 

  30. Meng Q, Cai D. Defective hypothalamic autophagy directs the central pathogenesis of obesity via the IkappaB kinase beta (IKKbeta)/NF-kappaB pathway. J Biol Chem. 2011;286:32324–32.

    Article  PubMed  CAS  Google Scholar 

  31. Milanski M et al. Saturated fatty acids produce an inflammatory response predominantly through the activation of TLR4 signaling in hypothalamus: implications for the pathogenesis of obesity. J Neurosci. 2009;29:359–70.

    Article  PubMed  CAS  Google Scholar 

  32. Oh I et al. Central administration of interleukin-4 exacerbates hypothalamic inflammation and weight gain during high-fat feeding. Am J Physiol Endocrinol Metab. 2010;299:E47–53.

    Article  Google Scholar 

  33. Purkayastha S et al. Neural dysregulation of peripheral insulin action and blood pressure by brain endoplasmic reticulum stress. Proc Natl Acad Sci U S A. 2011;108:2939–44.

    Article  PubMed  CAS  Google Scholar 

  34. Ballard C et al. Alzheimer’s disease. Lancet. 2011;377:1019–31.

    Article  PubMed  Google Scholar 

  35. Beydoun MA et al. Obesity and central obesity as risk factors for incident dementia and its subtypes: a systematic review and meta-analysis. Obes Rev. 2008;9:204–18.

    Article  PubMed  CAS  Google Scholar 

  36. Hamer M, Chida Y. Physical activity and risk of neurodegenerative disease: a systematic review of prospective evidence. Psychol Med. 2009;39:3–11.

    Article  PubMed  CAS  Google Scholar 

  37. Lees AJ et al. Parkinson’s disease. Lancet. 2009;373:2055–66.

    Article  PubMed  CAS  Google Scholar 

  38. Lu FP et al. Diabetes and the risk of multi-system aging phenotypes: a systematic review and meta-analysis. PLoS One. 2009;4:e4144.

    Article  PubMed  Google Scholar 

  39. Kornack DR, Rakic P. Continuation of neurogenesis in the hippocampus of the adult macaque monkey. Proc Natl Acad Sci U S A. 1999;96:5768–73.

    Article  PubMed  CAS  Google Scholar 

  40. Gould E et al. Hippocampal neurogenesis in adult Old World primates. Proc Natl Acad Sci U S A. 1999;96:5263–7.

    Article  PubMed  CAS  Google Scholar 

  41. Cameron HA, McKay R. Stem cells and neurogenesis in the adult brain. Curr Opin Neurobiol. 1998;8:677–80.

    Article  PubMed  CAS  Google Scholar 

  42. Gage FH. Mammalian neural stem cells. Science. 2000;287:1433–8.

    Article  PubMed  CAS  Google Scholar 

  43. Reynolds BA, Weiss S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science. 1992;255:1707–10.

    Article  PubMed  CAS  Google Scholar 

  44. Varez-Buylla A, Lim DA. For the long run: maintaining germinal niches in the adult brain. Neuron. 2004;41:683–6.

    Article  Google Scholar 

  45. Emsley JG et al. Adult neurogenesis and repair of the adult CNS with neural progenitors, precursors, and stem cells. Prog Neurobiol. 2005;75:321–41.

    Article  PubMed  CAS  Google Scholar 

  46. Eriksson PS et al. Neurogenesis in the adult human hippocampus. Nat Med. 1998;4:1313–7.

    Article  PubMed  CAS  Google Scholar 

  47. van Praaq H et al. Functional neurogenesis in the adult hippocampus. Nature. 2002;415:1030–4.

    Article  Google Scholar 

  48. Cameron HA, McKay RD. Adult neurogenesis produces a large pool of new granule cells in the dentate gyrus. J Comp Neurol. 2001;435:406–17.

    Article  PubMed  CAS  Google Scholar 

  49. Bedard A, Parent A. Evidence of newly generated neurons in the human olfactory bulb. Brain Res Dev Brain Res. 2004;151:159–68.

    Article  PubMed  CAS  Google Scholar 

  50. Kokoeva MV et al. Evidence for constitutive neural cell proliferation in the adult murine hypothalamus. J Comp Neurol. 2007;505:209–20.

    Article  PubMed  Google Scholar 

  51. Pierce AA, Xu AW. De novo neurogenesis in adult hypothalamus as a compensatory mechanism to regulate energy balance. J Neurosci. 2010;30:723–30.

    Article  PubMed  CAS  Google Scholar 

  52. Xu Y et al. Neurogenesis in the ependymal layer of the adult rat 3rd ventricle. Exp Neurol. 2005;192:251–64.

    Article  PubMed  CAS  Google Scholar 

  53. Bolborea M, Dale N. Hypothalamic tanycytes: potential roles in the control of feeding and energy balance. Trends Neurosci. 2013;36:91–100.

    Article  PubMed  CAS  Google Scholar 

  54. Lee DA et al. Tanycytes of the hypothalamic median eminence form a diet-responsive neurogenic niche. Nat Neurosci. 2012;15:700–2.

    Article  PubMed  CAS  Google Scholar 

  55. Dietrich MO, Horvath TL. Fat incites tanycytes to neurogenesis. Nat Neurosci. 2012;15:651–3.

    Article  PubMed  CAS  Google Scholar 

  56. Grote HE, Hannan AJ. Regulators of adult neurogenesis in the healthy and diseased brain. Clin Exp Pharmacol Physiol. 2007;34:533–45.

    Article  PubMed  CAS  Google Scholar 

  57. Monje ML et al. Inflammatory blockade restores adult hippocampal neurogenesis. Science. 2003;302:1760–5.

    Article  PubMed  CAS  Google Scholar 

  58. Vallieres L et al. Reduced hippocampal neurogenesis in adult transgenic mice with chronic astrocytic production of interleukin-6. J Neurosci. 2002;22:486–92.

    PubMed  CAS  Google Scholar 

  59. Packer MA et al. Nitric oxide negatively regulates mammalian adult neurogenesis. Proc Natl Acad Sci U S A. 2003;100:9566–71.

    Article  PubMed  CAS  Google Scholar 

  60. Donnelly DJ, Popovich PG. Inflammation and its role in neuroprotection, axonal regeneration and functional recovery after spinal cord injury. Exp Neurol. 2008;209:378–88.

    Article  PubMed  CAS  Google Scholar 

  61. Bonifati DM, Kishore U. Role of complement in neurodegeneration and neuroinflammation. Mol Immunol. 2007;44:999–1010.

    Article  PubMed  CAS  Google Scholar 

  62. McNay DE et al. Remodeling of the arcuate nucleus energy-balance circuit is inhibited in obese mice. J Clin Invest. 2012;122:142–52.

    Article  PubMed  CAS  Google Scholar 

  63. Gould E et al. Learning enhances adult neurogenesis in the hippocampal formation. Nat Neurosci. 1999;2:260–5.

    Article  PubMed  CAS  Google Scholar 

  64. Drapeau E et al. Learning-induced survival of new neurons depends on the cognitive status of aged rats. J Neurosci. 2007;27:6037–44.

    Article  PubMed  CAS  Google Scholar 

  65. Shors TJ et al. Neurogenesis in the adult is involved in the formation of trace memories. Nature. 2001;410:372–6.

    Article  PubMed  CAS  Google Scholar 

  66. Cai D. Neuroinflammation and neurodegeneration in overnutrition-induced diseases2250. Trends Endocrinol Metab. 2013;24:40–7.

    Article  PubMed  CAS  Google Scholar 

  67. Andersen JK. Oxidative stress in neurodegeneration: cause or consequence? Nat Med. 2004;10(Suppl):S18–25.

    Article  PubMed  Google Scholar 

  68. Craft JM et al. Neuroinflammation: a potential therapeutic target. Expert Opin Ther Targets. 2005;9:887–900.

    Article  PubMed  CAS  Google Scholar 

  69. Dickson DW et al. Microglia and cytokines in neurological disease, with special reference to AIDS and Alzheimer’s disease. Glia. 1993;7:75–83.

    Article  PubMed  CAS  Google Scholar 

  70. Hoozemans JJ et al. Always around, never the same: pathways of amyloid beta induced neurodegeneration throughout the pathogenic cascade of Alzheimer’s diseaseRadhika Muzumdar. Curr Med Chem. 2006;13:2599–605.

    Article  PubMed  CAS  Google Scholar 

  71. McGeer PL et al. Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology. 1988;38:1285–91.

    Article  PubMed  CAS  Google Scholar 

  72. Minghetti L et al. Microglial activation in chronic neurodegenerative diseases: roles of apoptotic neurons and chronic stimulation. Brain Res Brain Res Rev. 2005;48:251–6.

    Article  PubMed  CAS  Google Scholar 

  73. Sherman MP et al. Nitric oxide-mediated neuronal injury in multiple sclerosis. Med Hypotheses. 1992;39:143–6.

    Article  PubMed  CAS  Google Scholar 

  74. Lucas SM et al. The role of inflammation in CNS injury and disease. Br J Pharmacol. 2006;147 Suppl 1:S232–40.

    PubMed  CAS  Google Scholar 

  75. Gao HM, Hong JS. Why neurodegenerative diseases are progressive: uncontrolled inflammation drives disease progression. Trends Immunol. 2008;29:357–65.

    Article  PubMed  CAS  Google Scholar 

  76. Whitton PS. Inflammation as a causative factor in the aetiology of Parkinson’s disease. Br J Pharmacol. 2007;150:963–76.

    Article  PubMed  CAS  Google Scholar 

  77. Block ML, Hong JS. Microglia and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism. Prog Neurobiol. 2005;76:77–98.

    Article  PubMed  CAS  Google Scholar 

  78. Cui L et al. Transcriptional repression of PGC-1alpha by mutant huntingtin leads to mitochondrial dysfunction and neurodegeneration. Cell. 2006;127:59–69.

    Article  PubMed  CAS  Google Scholar 

  79. Dawson TM, Dawson VL. Molecular pathways of neurodegeneration in Parkinson’s disease. Science. 2003;302:819–22.

    Article  PubMed  CAS  Google Scholar 

  80. DiMauro S, Schon EA. Mitochondrial disorders in the nervous system. Annu Rev Neurosci. 2008;31:91–123.

    Article  PubMed  CAS  Google Scholar 

  81. Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature. 2006;443:787–95.

    Article  PubMed  CAS  Google Scholar 

  82. Tabas I, Ron D. Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nat Cell Biol. 2011;13:184–90.

    Article  PubMed  CAS  Google Scholar 

  83. Uehara T et al. S-nitrosylated protein-disulphide isomerase links protein misfolding to neurodegeneration. Nature. 2006;441:513–7.

    Article  PubMed  CAS  Google Scholar 

  84. Komatsu M et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature. 2006;441:880–4.

    Article  PubMed  CAS  Google Scholar 

  85. Lee JA, Gao FB. Inhibition of autophagy induction delays neuronal cell loss caused by dysfunctional ESCRT-III in frontotemporal dementia. J Neurosci. 2009;29:8506–11.

    Article  PubMed  CAS  Google Scholar 

  86. Martinez-Vicente M, Cuervo AM. Autophagy and neurodegeneration: when the cleaning crew goes on strike. Lancet Neurol. 2007;6:352–61.

    Article  PubMed  CAS  Google Scholar 

  87. Naidoo N. The endoplasmic reticulum stress response and aging. Rev Neurosci. 2009;20:23–37.

    PubMed  CAS  Google Scholar 

  88. Bazan NG et al. Hypoxia signaling to genes: significance in Alzheimer’s disease. Mol Neurobiol. 2002;26:283–98.

    Article  PubMed  CAS  Google Scholar 

  89. Braun RJ, Zischka H. Mechanisms of Cdc48/VCP-mediated cell death: from yeast apoptosis to human disease. Biochim Biophys Acta. 2008;1783:1418–35.

    Article  PubMed  CAS  Google Scholar 

  90. Giraud SN et al. Estradiol inhibits ongoing autoimmune neuroinflammation and NFkappaB-dependent CCL2 expression in reactive astrocytes. Proc Natl Acad Sci U S A. 2010;107:8416–21.

    Article  PubMed  CAS  Google Scholar 

  91. Lezoualc’h F, Behl C. Transcription factor NF-kappaB: friend or foe of neurons? Mol Psychiatry. 1998;3:15–20.

    Article  PubMed  Google Scholar 

  92. Lim KL, Lim GG. K63-linked ubiquitination and neurodegeneration. Neurobiol Dis. 2011;43:9–16.

    Article  PubMed  CAS  Google Scholar 

  93. Steen E et al. Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer’s disease–is this type 3 diabetes? J Alzheimers Dis. 2005;7:63–80.

    PubMed  CAS  Google Scholar 

  94. Thaler JP et al. Obesity is associated with hypothalamic injury in rodents and humans. J Clin Invest. 2012;122:153–62.

    Article  PubMed  CAS  Google Scholar 

  95. Hu LF et al. Neuroprotective effects of hydrogen sulfide on Parkinson’s disease rat models. Aging Cell. 2010;9:135–46.

    Article  PubMed  CAS  Google Scholar 

  96. Kawamata J, Shimohama S. Stimulating nicotinic receptors trigger multiple pathways attenuating cytotoxicity in models of Alzheimer’s and Parkinson’s diseases. J Alzheimers Dis. 2011;24 Suppl 2:95–109.

    PubMed  CAS  Google Scholar 

  97. Zhu F, Qian C. Berberine chloride can ameliorate the spatial memory impairment and increase the expression of interleukin-1beta and inducible nitric oxide synthase in the rat model of Alzheimer’s disease. BMC Neurosci. 2006;7:78.

    Article  PubMed  Google Scholar 

  98. Choi SH et al. The distinct roles of cyclooxygenase-1 and −2 in neuroinflammation: implications for translational research. Trends Pharmacol Sci. 2009;30:174–81.

    Article  PubMed  CAS  Google Scholar 

  99. Dinarello CA. Anti-inflammatory agents: present and future. Cell. 2010;140:935–50.

    Article  PubMed  CAS  Google Scholar 

  100. Glass CK et al. Mechanisms underlying inflammation in neurodegeneration. Cell. 2010;140:918–34.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors sincerely thank Cai lab members for related research. D.C. is supported by NIH R01 DK078750, R01 AG031774, R01 HL113180, and American Diabetes Association grant 1-12-BS-20. D.C. is a recipient of Irma T. Hirschl Scholarship.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongsheng Cai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Purkayastha, S., Cai, D. Disruption of neurogenesis by hypothalamic inflammation in obesity or aging. Rev Endocr Metab Disord 14, 351–356 (2013). https://doi.org/10.1007/s11154-013-9279-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-013-9279-z

Keywords

Navigation