Skip to main content
Log in

Modelling of an annular photocatalytic reactor

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

This work deals with the photocatalytic oxidation of toluene at room temperature and atmospheric pressure in the gas phase. The differential equations of the reactor model are solved numerically with simultaneous estimation of the model parameters. Estimation of the kinetic data is performed using a modified differential method of data analysis and a Nelder–Mead method of nonlinear optimization for parameter estimation. The reaction is performed in an annular photoreactor using UVA black light blue fluorescent lamp. The experiments are carried out at different total flow rates of the reaction feed (20–160 cm3 min−1), two different inlet concentrations of toluene (2.67 and 5.24 g m−3) and at constant relative humidity (25%). A good agreement between the experimental data and theoretical predictions is obtained, supporting the applicability of the proposed models to describe the investigated process performed in laboratory annular photoreactor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

a :

Geometric surface area (m2)

A R :

Surface area of reactor (annulus) cross-section (m2)

C A :

Toluene concentration (g m−3)

C A,0 :

Inlet toluene concentration (g m−3)

CA,g :

Toluene concentration in the fluid phase (g m−3)

CA,s :

Toluene concentration at the solid phase (g m−3)

\( \overline{C}_{A ,t} \) :

Average toluene concentration in the fluid phase (g m−3)

D A :

Molecular diffusion coefficient of toluene in air (m2 s−1)

k A :

Reaction rate constant (min−1)

k g :

Interphase mass transfer coefficient (m h−1)

N :

Number of the experimental points (dimensionless)

r :

Radial reactor coordinate (m)

r A :

Reaction rate (mol h−1 kg−1)

R :

Diameter of reactor annulus (m)

SD:

Root of the mean square deviation (dimensionless)

u :

Superficial fluid velocity (m h−1)

um :

Mean superficial fluid velocity (m h−1)

v 0 :

Volume flow rate (m3 h−1)

V :

Reactor volume (m3)

X A :

Toluene conversion (dimensionless)

z :

Axial reactor coordinate (m)

Z:

Length of the reactor (m)

κ :

Ratio of inner and outer reactor diameter (dimensionless)

τ:

Space time (min)

Re:

Reynolds number (dimensionless)

Sc:

Schmidt number (dimensionless)

Sh:

Sherwood number (dimensionless)

References

  1. De Lasa H, Serrano B, Salaices M (2005) Photocatalytic reaction engineering. Springer, New York

    Google Scholar 

  2. Michael STM, Hoffmann R, Choi W, Banhemann DW (1995) Chem Rev 95:69

    Article  Google Scholar 

  3. Zhao J, Yang X (2003) Build Environ 38:645

    Article  Google Scholar 

  4. Bhatkhande DS, Pangarkar VG, Beenackers AACM (2001) J Chem Technol Biotechnol 77:102

    Article  Google Scholar 

  5. Ollis DF (2000) CR Acad Sci Paris, Série Iic. Chimie/Chem 3:405

    CAS  Google Scholar 

  6. Fox MA, Dulay MT (1993) Chem Rev 93:341

    Article  CAS  Google Scholar 

  7. Mills A, Lee SK (1992) J Photochem Photobiolog A Chem 152:233

    Article  Google Scholar 

  8. Paz Y (2010) Appl Cat B Environ. doi:10.1016/j.apcatb.2010.05.011

  9. Cao L, Gao Z, Suib SL, Obee TN, Hay SO, Freihaut JD (2000) J Catal 196:253

    Article  CAS  Google Scholar 

  10. Mo J, Zhang Y, Xuz Q, Zhu Y, Lamson JJ, Zhao R (2009) Appl Catal B Environ 89:570

    Article  CAS  Google Scholar 

  11. d’Hennezel O, Pichat P, Ollis DF (1998) J Photochem Photobiolog A Chem 118:197

    Article  Google Scholar 

  12. Jeong J, Sekiguchi K, Lee W, Sakamoto K (2005) J Photochem Photobiolog A Chem 169:279

    Article  CAS  Google Scholar 

  13. Mendez-Roman R, Cardona-Martinez N (1998) Catal Today 40:353

    Article  CAS  Google Scholar 

  14. Xie C, Xu Z, Yang Q, Li N, Zhao D, Wang D, Du Y (1994) J Mol Catal A Chem 217:193

    Article  Google Scholar 

  15. Alberici RM, Jardim WF (1997) Appl Catal B Environ 14:55

    Article  CAS  Google Scholar 

  16. Nicollella C, Rovatti M (1998) Chem Eng J 69:119

    Article  Google Scholar 

  17. Romero-Vargas Castrillón S, Ibrahim H, De Lasa H (2006) Chem Eng Sci 61:3343

    Article  Google Scholar 

  18. Ibhadon AO, Arabatzis IM, Falaras P, Tsoukleris D (2007) Chem Eng J 133:317

    Article  CAS  Google Scholar 

  19. Imoberdorf GE, Cassano AE, Irazoqui HA, Alfano OM (2007) Catal Today 129:118

    Article  CAS  Google Scholar 

  20. Imoberdorf GE, Cassano AE, Irazoqui HA, Alfano OM (2007) Chem Eng Sci 64:1138

    Google Scholar 

  21. Furman M, Corbel S, Wild G, Zahraa O (2010) Chem Eng Proc Proc Intensification 49:35

    Article  CAS  Google Scholar 

  22. Paz Y (2009) Adv Chem Eng 36:289

    Article  CAS  Google Scholar 

  23. Wu JF, Hung CH, Yuan CS (2005) J Photochem Photobiol A Chem 170:299

    Article  CAS  Google Scholar 

  24. Obuchi E, Sakamoto T, Nakano K (1999) Chem Eng Sci 54:1525

    Article  CAS  Google Scholar 

  25. Tomašić V, Jović F, Gomzi Z (2008) Catal Today 137:350

    Article  Google Scholar 

  26. Taghipour F, Mohseni M (2005) AIChE J 51(11):3039

    Article  CAS  Google Scholar 

  27. Imoberdorf GE, Irazoqui HA, Alfano OM, Cassano AE (2007) Chem Eng Sci 62:793

    Article  CAS  Google Scholar 

  28. Palmisano G, Addamo M, Augugliaro V, Caronna T, Paola AD, Lopez EG, Loddo V, Marcı G, Palmisano L, Schiavello M (2007) Catal Today 122:118

    Article  CAS  Google Scholar 

  29. Kim SB, Hwang HT, Hong SC (2002) Chemosphere 48:437

    Article  CAS  Google Scholar 

  30. Zalazar CS, Martin CA, Cassano AE (2005) Chem Eng Sci 60:4311

    Article  CAS  Google Scholar 

  31. Demeestere K, Visscher AD, Dewulf J, Leeuwen MV, Langenhove HV (2004) Appl Catal B Environ 54:261

    Article  CAS  Google Scholar 

  32. Obee TN, Hay SO (1997) Environ Sci Techol 31:2034

    Article  CAS  Google Scholar 

  33. Mehrdad Keshmiri TT, Mohseni Madjid (2006) J Hazard Mat B 128:130

    Article  Google Scholar 

  34. Yu H, Zhang K, Rossi C (2007) J Photochem Photobiol A Chem 188:65

    Article  CAS  Google Scholar 

  35. Ge H, Chen G, Yuan Q, Li H (2005) Cat Today 110:171

    Article  CAS  Google Scholar 

  36. Schiesser WE (1991) The numerical methods of lines. Integration of partial differential equations. Academic Press, San Diego

    Google Scholar 

  37. http://www.epa.gov/athens/learn2model/part-two/onsite/estdiffusion.html

  38. Bouzaza A, Vallet C, Laplanche A (2006) J Photochem Photobiol A Chem 177:212

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors highly appreciate the financial support that the Ministry of Science, Education and Sport of Republic of Croatia has given for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Tomašić.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marečić, M., Jović, F., Kosar, V. et al. Modelling of an annular photocatalytic reactor. Reac Kinet Mech Cat 103, 19–29 (2011). https://doi.org/10.1007/s11144-011-0299-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-011-0299-y

Keywords

Navigation