Skip to main content
Log in

Nitrogen addition, drought and mixture effects on litter decomposition and nitrogen immobilization in a temperate forest

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and Aims

Litter decomposition serves an important role in maintaining nitrogen (N) availability within forest ecosystems. However, the interactive effects of exogenous N, drought, and litter quality and mixing on N immobilization during decomposition remain unclear. The aim of this study was to assess the effects of litter quality, reduced precipitation, N addition, and their interactions on litter mass loss and N immobilization.

Methods

This field study analyzed the effects of N addition and decreased precipitation on the decomposition rates and associated N immobilization of four types of litter: Quercus mongolica (QM), Tilia amurensis (TA), Pinus koraiensis (PK), and a mixture (MIX) of all three. The chemical quality of the MIX was prepared in a 4:3:3 (mass) ratio of PK, TA, and QM litters. Litterbags were placed in an N addition and precipitation manipulation forest field and collected after 92, 154, 365, 457, and 874 days. Decomposing litter residues were characterized for mass loss and N content to assess N immobilization.

Results

The addition of N had no significant effect on litter decomposition under both precipitation conditions, but a reduction in precipitation significantly depressed litter decomposition. The increases in N immobilization with N addition depended on the litter type and decomposition period. Precipitation reduction had significant effects on N immobilization and enhanced the magnitude and duration of N immobilization in decomposing litter, and both of which can be increased by N addition. The results indicate that the litter species is the major regulator that controls mass loss and N immobilization. Furthermore, the MIX treatment did not show non-additive effects on mass loss but did exhibit some weak synergistic effects on N immobilization.

Conclusions

Our results suggest that decomposing litters could help to sequester N depending on the litter identity and water regime in temperate forest ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aber JD (1992) Nitrogen cycling and nitrogen saturation in temperate forest ecosystems. Trends Ecol Evol 7:220–224

    Article  CAS  PubMed  Google Scholar 

  • Aerts R, van Logtestijn R, Karlsson P (2006) Nitrogen supply differentially affects litter decomposition rates and nitrogen dynamics of sub-arctic bog species. Oecologia 146:652–658

    Article  CAS  PubMed  Google Scholar 

  • Berg B (2000) Initial rates and limit values for decomposition of scots pine and Norway spruce needle litter: a synthesis for N-fertilized forest stands. Can J For Res 30:122–135

    Article  CAS  Google Scholar 

  • Berg B, McClaugherty C (2008) Plant litter: decomposition, humus formation, carbon sequestration, 2nd edn. Springer Verlag Berlin Heidelberg, Berlin, p 340

  • Bi J, Zhang N, Liang Y, Yang H, Ma K (2012) Interactive effects of water and nitrogen addition on soil microbial communities in a semiarid steppe. J Plant Ecol 5:320–329

    Article  Google Scholar 

  • Bradley K, Drijber RA, Knops J (2006) Increased N availability in grassland soils modifies their microbial communities and decreases the abundance of arbuscular mycorrhizal fungi. Soil Biol Biochem 38:1583–1595

    Article  CAS  Google Scholar 

  • Brais S, Paré D, Lierman C (2011) Tree bole mineralization rates of four species of the Canadian eastern boreal forest: implications for nutrient dynamics following stand-replacing disturbances. Can J For Res 36:2331–2340

    Article  Google Scholar 

  • Cardinale BJ, Matulich KL, Hooper DU, Byrnes JE, Duffy E, Gamfeldt L, Balvanera P, O'Connor MI, Gonzalez A (2011) The functional role of producer diversity in ecosystems. Am J Bot 98:572–592

    Article  PubMed  Google Scholar 

  • Chapman SK, Newman GS, Hart SC, Schweitzer JA, Koch GW (2013) Leaf litter mixtures alter microbial community development: mechanisms for non-additive effects in litter decomposition. PLoS One 8:e62671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clark JS, Vose JM, Luce CH (2016) Forest drought as an emerging research priority. Glob Chang Biol 22:2317–2317

    Article  PubMed  Google Scholar 

  • Clein JS, Schimel JP (1994) Reduction in microbial activity in birch litter due to drying and rewetting event. Soil Biol Biochem 26:403–406

    Article  Google Scholar 

  • Corre MD, Beese FO, Brumme R (2003) Soil nitrogen cycle in high nitrogen deposition forest: changes under nitrogen saturation and liming. Ecol Appl 13:287–298

    Article  Google Scholar 

  • Davidson EA, Samanta S, Caramori SS, Savage K (2012) The dual Arrhenius and Michaelis–Menten kinetics model for decomposition of soil organic matter at hourly to seasonal time scales. Glob Chang Biol 18:371–384

    Article  Google Scholar 

  • Deng XW, Liu Y, Han SJ (2009) Carbon and nitrogen dynamics in early stages of forest litter decomposition as affected by nitrogen addition. J For Res 20:111–116

    Article  CAS  Google Scholar 

  • Dijkstra FA, West JB, Hobbie SE, Reich PB (2009) Antagonistic effects of species on C respiration and net N mineralization in soils from mixed coniferous plantations. For Ecol Manag 257:1112–1118

    Article  Google Scholar 

  • Earl SR, Valett HM, Webster JR (2006) Nitrogen saturation in stream ecosystems. Ecology 87:3140–3151

    Article  PubMed  Google Scholar 

  • Fang H, Mo J, Peng S, Li Z, Wang H (2007) Cumulative effects of nitrogen additions on litter decomposition in three tropical forests in southern China. Plant Soil 297:233–242

    Article  CAS  Google Scholar 

  • Freedman ZB, Romanowicz KJ, Upchurch RA et al (2015) Differential responses of total and active soil microbial communities to long-term experimental N deposition. Soil Biol Biochem 7:275–282

    Article  Google Scholar 

  • Galloway JN, Cowling EB (2002) Reactive nitrogen and the world: 200 years of change. AMBIO: A Journal of the Human Environment 31:64–71

    Article  Google Scholar 

  • García-Palacios P, Shaw EA, Wall DH, Hättenschwiler S (2016) Temporal dynamics of biotic and abiotic drivers of litter decomposition. Ecol Lett 5:554–563

    Article  Google Scholar 

  • Garcia-Pausas J, Casals P, Rovira P, Vallecillo S, Sebastià M-T, Romanyà J (2012) Decomposition of labelled roots and root-C and-N allocation between soil fractions in mountain grasslands. Soil Biol Biochem 49:61–69

    Article  CAS  Google Scholar 

  • Gundersen P (1998) Effects of enhanced nitrogen deposition in a spruce forest at Klosterhede, Denmark, examined by moderate NH4NO3 addition. Forest Ecol Manag 101:251–268. doi:10.1016/s0378-1127(97)00141-2

    Article  Google Scholar 

  • Gundersen P, Emmett BA, Kjønaas OJ, Koopmans CJ, Tietema A (1998) Impact of nitrogen deposition on nitrogen cycling in forests: a synthesis of NITREX data. Forest Ecol Manag 101:37–55

    Article  Google Scholar 

  • Handa IT, Aerts R, Berendse F, Berg MP, Bruder A, Butenschoen O, Chauvet E, Gessner MO, Jabiol J, Makkonen M (2014) Consequences of biodiversity loss for litter decomposition across biomes. Nature 509:218–221

    Article  CAS  PubMed  Google Scholar 

  • He Y, Zhuang Q, Harden J, McGuire A, Fan Z, Liu Y, Wickland K (2014) The implications of microbial and substrate limitation for the fates of carbon in different organic soil horizon types of boreal forest ecosystems: a mechanistically based model analysis. Biogeosciences 11:4477–4491

    Article  CAS  Google Scholar 

  • Hesse CN, Mueller RC, Vuyisich M et al (2015) Forest floor community metatranscriptomes identify fungal and bacterial responses to N deposition in two maple forests. Front Microbiol 337:337

    Google Scholar 

  • Huang JH, Han XG, Chen LZ (1998) Studies on litter decomposition processes in a temperate forest ecosystem. I. Change of organic matter in oak (Quercus liaotungensis Koidz.) twigs. Ecol Res 13:163–170

    Article  Google Scholar 

  • Janssens IA, Dieleman W, Luyssaert S, Subke JA, Reichstein M, Ceulemans R, Ciais P, Dolman AJ, Grace J, Matteucci G, Papale D, Piao SL, Schulze ED, Tang J, Law BE (2010) Reduction of forest soil respiration in response to nitrogen deposition. Nat Geosci 3:315–322 http://www.nature.com/ngeo/journal/v3/n5/suppinfo/ngeo844_S1.html

    Article  CAS  Google Scholar 

  • Jenny H, Gessel SP, Bingham FT, Jenny H, Gessel SP, Bingham FT (1949) Comparative study of decomposition rates of organic matter in temperate and tropical regions. Soil Sci 68:419–432

    Article  CAS  Google Scholar 

  • Johnson CE, Siccama TG, Denny EG, Koppers MM, Vogt DJ (2014) In situ decomposition of northern hardwood tree boles: decay rates and nutrient dynamics in wood and bark. Can J For Res 44:1515–1524

    Article  CAS  Google Scholar 

  • Keeney DR, Nelson DW (1982) Nitrogen-inorganic forms. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis. Part 2, 2nd edn. Series Agronomy 9. ASA, SSSA, Madison

  • Knorr M, Frey S, Curtis P (2005) Nitrogen additions and litter decomposition: a meta-analysis. Ecology 86:3252–3257

    Article  Google Scholar 

  • Li A, Fahey TJ (2013) Nitrogen translocation to fresh litter in northern hardwood forest. Ecosystems 16:521–528

    Article  CAS  Google Scholar 

  • Liu W, Fox JE, Xu Z (2000) Leaf litter decomposition of canopy trees, bamboo and moss in a montane moist evergreen broad-leaved forest on Ailao Mountain, Yunnan, south-West China. Ecol Res 15:435–447

    Article  Google Scholar 

  • Liu X, Zhang Y, Han W, Tang A, Shen J, Cui Z, Vitousek P, Erisman JW, Goulding K, Christie P (2013) Enhanced nitrogen deposition over China. Nature 494:459–462

    Article  CAS  PubMed  Google Scholar 

  • Lü C, Tian H (2007) Spatial and temporal patterns of nitrogen deposition in China: Synthesis of observational data. J Geophys Res 112:D22S05. doi:10.1029/2006jd007990

    Article  Google Scholar 

  • Magill AH, Aber JD (1998) Long-term effects of experimental nitrogen additions on foliar litter decay and humus formation in forest ecosystems. Plant Soil 203:301–311

    Article  CAS  Google Scholar 

  • Manzoni S, Piñeiro G, Jackson RB, Jobbágy EG, Kim JH, Porporato A (2012) Analytical models of soil and litter decomposition: solutions for mass loss and time-dependent decay rates. Soil Biol Biochem 50:66–76

    Article  CAS  Google Scholar 

  • Meier CL, Bowman WD (2010) Chemical composition and diversity influence non-additive effects of litter mixtures on soil carbon and nitrogen cycling: implications for plant species loss. Soil Biol Biochem 42:1447–1454

    Article  CAS  Google Scholar 

  • Mi Z, Guan D, Han S, Jiabing WU, Zhang J, Jin M, Hao XU, Xiu HE, Dai G (2005) Climatic dynamics of broadleaved Korean pine forest in Changbai Mountain during the last 22 Years. Chin J Ecol 43:291–296

    Google Scholar 

  • Nilsen P, Børja I, Knutsen H, Brean R (1998) Nitrogen and drought effects on ectomycorrhizae of Norway spruce [Picea abies L.(Karst.)]. Plant Soil 198:179–184

    Article  CAS  Google Scholar 

  • Olson JS (1963) Energy storage and the balance of producers and decomposers in ecological systems. Ecology 44:322–331

    Article  Google Scholar 

  • Perakis SS, Hedin LO (2002) Nitrogen loss from unpolluted south American forests mainly via dissolved organic compounds. Nature 415:416–419

    Article  PubMed  Google Scholar 

  • Ribeiro C, Madeira M, Araújo MC (2002) Decomposition and nutrient release from leaf litter of Eucalyptus globulus grown under different water and nutrient regimes. Forest Ecol Manag 171:31–41. doi:10.1016/s0378-1127(02)00459-0

    Article  Google Scholar 

  • Rovira P, Rovira R (2010) Fitting litter decomposition datasets to mathematical curves: towards a generalised exponential approach. Geoderma 155:329–343

    Article  Google Scholar 

  • Sanaullah M, Rumpel C, Charrier X, Chabbi A (2012) How does drought stress influence the decomposition of plant litter with contrasting quality in a grassland ecosystem? Plant Soil 352:277–288. doi:10.1007/s11104-011-0995-4

    Article  CAS  Google Scholar 

  • Santos JC, Finlay RD, Tehler A (2006) Molecular analysis of arbuscular mycorrhizal fungi colonising a semi-natural grassland along a fertilisation gradient. New Phytol 172:159–168

    Article  CAS  PubMed  Google Scholar 

  • Scheffer R, Van Logtestijn R, Verhoeven J (2001) Decomposition of Carex and sphagnum litter in two mesotrophic fens differing in dominant plant species. Oikos 92:44–54

    Article  Google Scholar 

  • Schimel JP, Hättenschwiler S (2007) Nitrogen transfer between decomposing leaves of different N status. Soil Biol Biochem 39:1428–1436

    Article  CAS  Google Scholar 

  • Schuster MJ (2016) Increased rainfall variability and N addition accelerate litter decomposition in a restored prairie. Oecologia 3:645–655

    Article  Google Scholar 

  • Schweitzer JA, Bailey JK, Hart SC, Whitham TG (2005) Nonadditive effects of mixing cottonwood genotypes on litter decomposition and nutrient dynamics. Ecology 86:2834–2840

    Article  Google Scholar 

  • Srivastava DS, Cardinale BJ, Downing AL, Duffy JE, Jouseau C, Sankaran M, Wright JP (2009) Diversity has stronger top-down than bottom-up effects on decomposition. Ecology 90:1073–1083

    Article  PubMed  Google Scholar 

  • Sun X, Zhang X, Zhang S, Dai G, Han S, Liang W (2013) Soil nematode responses to increases in nitrogen deposition and precipitation in a temperate forest. PLoS One 8:e82468

    Article  PubMed  PubMed Central  Google Scholar 

  • Suseela V, Tharayil N, Xing B, Dukes JS (2013) Labile compounds in plant litter reduce the sensitivity of decomposition to warming and altered precipitation. New Phytol 200:122–133

    Article  CAS  PubMed  Google Scholar 

  • Tahovská K, Kaňa J, Bárta J et al (2013) Microbial N immobilization is of great importance in acidified mountain spruce forest soils. Soil Biol Biochem 2:58–71

    Article  Google Scholar 

  • Vestgarden L (2001) Carbon and nitrogen turnover in the early stage of scots pine (Pinus sylvestris L.) needle litter decomposition: effects of internal and external nitrogen. Soil Biol Biochem 33:465–474

    Article  CAS  Google Scholar 

  • Vivanco L, Austin AT (2011) Nitrogen addition stimulates forest litter decomposition and disrupts species interactions in Patagonia, Argentina. Glob Chang Biol 17:1963–1974

    Article  Google Scholar 

  • Waldrop MP, Zak DR, Sinsabaugh RL, Gallo M, Lauber C (2004) Nitrogen deposition modifies soil carbon storage through changes in microbial enzymatic activity. Ecol Appl 14:1172–1177

    Article  Google Scholar 

  • Wang Y, Cao MK, Tao B, Ke rang LI (2006) The characteristics of spatio-temporal patterns in precipitation in China under the background of global climate change. Geogr Res 25: 1031–1040.

  • Wider RK, Lang GE (1982) A critique of the analytical methods used in examining decomposition data obtained from litter bags. Ecology 63:1636–1642

    Article  Google Scholar 

  • Wieder WR, Cleveland CC, Townsend AR (2009) Controls over leaf litter decomposition in wet tropical forests. Ecology 90:3333–3341. doi:10.1890/08-2294.1

    Article  PubMed  Google Scholar 

  • Yahdjian L, Sala O, Austin A (2006) Differential controls of water input on litter decomposition and nitrogen dynamics in the patagonian steppe. Ecosystems 9:128–141. doi:10.1007/s10021-004-0118-7

    Article  CAS  Google Scholar 

  • Zhao H, Huang G, Li Y et al (2015) Effects of increased summer precipitation and nitrogen addition on root decomposition in a Temperate Desert. PLoS One 11:e0142380

    Article  Google Scholar 

  • Zheng JQ, Han SJ, Wang Y, Zhang CG, Li MH (2010) Composition and function of microbial communities during the early decomposition stages of foliar litter exposed to elevated CO 2 concentrations. Eur J Soil Sci 61:914–925

    Article  Google Scholar 

  • Zheng JQ, Xu ZH, Wang YZ, Dong HB, Chen CR, Han SJ (2014) Non-additive effects of mixing different sources of dissolved organic matter on its biodegradation. Soil Biol Biochem 78:160–169

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the National Basic Research Program of China (973 Program; 2014CB954400) and the National Natural Science Foundation of China (41473077, 41173087 and 41330530) for their financial support. We are grateful to Guanhua Dai for litter collection. We are also grateful to Yan Zhang of the Institute of Applied Ecology and Dong Li of the Panjin Institute of Reed for their assistance during the experimental process.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junqiang Zheng or Shijie Han.

Additional information

Responsible Editor: Duncan D. Cameron.

Electronic supplementary material

Fig. S1

(DOC 144 kb)

Fig. S2

(DOC 81 kb)

Fig. S3

(DOC 253 kb)

Table S1

(DOC 39 kb)

Table S2

(DOC 38 kb)

Table S3

(DOC 59 kb)

Table S4

(DOC 59 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, J., Guo, R., Li, D. et al. Nitrogen addition, drought and mixture effects on litter decomposition and nitrogen immobilization in a temperate forest. Plant Soil 416, 165–179 (2017). https://doi.org/10.1007/s11104-017-3202-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-017-3202-4

Keywords

Navigation