Skip to main content
Log in

Responses of soil biota and nitrogen availability to an invasive plant under aboveground herbivory

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

Recently, much attention has been paid to the plant-mediated effects of aboveground herbivory on soil ecosystems. However, studies about the herbivore-induced effects of invasive plants on soil ecosystem are still lacking. In this study, we aimed to examine the soil biota and nutrient availability to an invasive plant under aboveground herbivory stress, and compare the soil responses with a native plant.

Methods

We subjected an invasive plant (Spartina alterniflora) and a native plant (Phragmites australis) to herbivory by caterpillars of native moth Laelia coenosa, and measured soil microbes, nematodes, inorganic nitrogen (N), plant biomass and N content.

Results

Soil microbial biomass, nematode abundance, ammonium N concentrations and N mineralization rates were significantly stimulated by herbivory of the invasive S. alterniflora. Besides, the stimulation of bacteria: fungi ratio, abundance of bacterivorous nematodes, and ammonium N availability were significantly higher for S. alterniflora than for P. australis.

Conclusions

In general, aboveground insect herbivory of the invasive S. alterniflora enhanced the abundance of soil biota, and the soil N availability. The greater soil responses associated with S. alterniflora suggest stronger positive soil feedback than those with the native P. australis, which might facilitate the invasive plant to successfully invade its new range under biotic stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ayres E, Heath J, Possell M, Black HIJ, Kerstiens G, Bardgett RD (2004) Tree physiological responses to above-ground herbivory directly modify below-ground processes of soil carbon and nitrogen cycling. Ecol Lett 7:469–479

    Article  Google Scholar 

  • Bardgett RD, Wardle DA (2003) Herbivore-mediated linkages between aboveground and belowground communities. Ecology 84:2258–2268

    Article  Google Scholar 

  • Bardgett RD, Hobbs PJ, Frostegard A (1996) Changes in soil fungal: bacterial biomass ratios following reductions in the intensity of management of an upland grassland. Biol Fertil Soils 22:261–264

    Article  Google Scholar 

  • Bardgett RD, Wardle DA, Yeates GW (1998) Linking above-ground and below-ground interactions: how plant responses to foliar herbivory influence soil organisms. Soil Biol Biochem 14:1867–1878

    Article  Google Scholar 

  • Bezemer TM, Harvey JA, Cronin JT (2014) Response of native insect communities to invasive plants. Annu Rev Entomol 59:119–141

    Article  CAS  PubMed  Google Scholar 

  • Bonkowski M, Griffiths B, Scrimgeour C (2000) Substrate heterogeneity and microfauna in soil organic 'hotspots' as determinants of nitrogen capture and growth of ryegrass. Appl Soil Ecol 14:37–53

    Article  Google Scholar 

  • Bossio DA, Scow KM (1998) Impacts of carbon and flooding on soil microbial communities: phospholipid fatty acid profiles and substrate utilization patterns. Microb Ecol 35:265–278

    Article  CAS  PubMed  Google Scholar 

  • Brzezinski MA (1987) Colorimetric determination of nanomolar concentrations of ammonium in seawater using solvent-extraction. Mar Chem 20:277–288

    Article  CAS  Google Scholar 

  • Campos-Herrera R, Ali JG, Diaz BM, Duncan LW (2013) Analyzing spatial patterns linked to the ecology of herbivores and their natural enemies in the soil. Front Plant Sci 4:378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chapman SK, Hart SC, Cobb NS, Whitham TG, Koch GW (2003) Insect herbivory increases litter quality and decomposition: an extension of the acceleration hypothesis. Ecology 84:2867–2876

    Article  Google Scholar 

  • Chen Z, Li B, Zhong Y, Chen J (2004) Local competitive effects of introduced Spartina alterniflora on Scirpus mariqueter at Dongtan of Chongming Island, the Yangtze River estuary and their potential ecological consequences. Hydrobiologia 528:99–106

    Article  Google Scholar 

  • Chen H, Li B, Hu J, Chen J, Wu J (2007) Effects of Spartina alterniflora invasion on benthic nematode communities in the Yangtze estuary. Mar Ecol Prog Ser 336:99–110

    Article  Google Scholar 

  • de Jonge VN, Bouwman LA (1977) A simple density separation technique for quantitative isolation of meiobenthos using the colloidal silica Ludox-TM. Mar Biol 42:143–148

    Article  Google Scholar 

  • Doorduin LJ, Vrieling K (2011) A review of the phytochemical support for the shifting defence hypothesis. Phytochem Rev 10:99–106

    Article  CAS  PubMed  Google Scholar 

  • Ferris H (2010) Contribution of nematodes to the structure and function of the soil food web. J Nematol 42:63–67

    PubMed  PubMed Central  Google Scholar 

  • Frank DA, Kuns MM, Guido DR (2002) Consumer control of grassland plant production. Ecology 83:602–606

    Article  Google Scholar 

  • Gal C, Frenzel W, Moller JR (2004) Re-examination of the cadmium reduction method and optimisation of conditions for the determination of nitrate by flow injection analysis. Microchim Acta 146:155–164

    Article  CAS  Google Scholar 

  • Hamilton EW, Frank DA (2001) Can plants stimulate soil microbes and their own nutrient supply? Evidence from a grazing tolerant grass. Ecology 82:2397–2402

    Article  Google Scholar 

  • Hamilton EW, Frank DA, Hinchey PM, Murray TR (2008) Defoliation induces root exudation and triggers positive rhizospheric feedbacks in a temperate grassland. Soil Biol Biochem 40:2865–2873

    Article  CAS  Google Scholar 

  • Ilmarinen K, Mikola J, Nissinen K, Vestberg M (2009) Role of soil organisms in the maintenance of species-rich seminatural grasslands through mowing. Restor Ecol 17:78–88

    Article  Google Scholar 

  • Inderjit, van der Putten WH (2010) Impacts of soil microbial communities on exotic plant invasions. Trends Ecol Evol 25:512–519

    Article  CAS  PubMed  Google Scholar 

  • Johnson SN, Clark KE, Hartley SE, Jones TH, McKenzie SW, Koricheva J (2012) Aboveground-belowground herbivore interactions: a meta-analysis. Ecology 93:2208–2215

    Article  PubMed  Google Scholar 

  • Joshi J, Vrieling K (2005) The enemy release and EICA hypothesis revisited: incorporating the fundamental difference between specialist and generalist herbivores. Ecol Lett 8:704–714

    Article  Google Scholar 

  • Ju RT, Chen YY, Gao L, Li B (2016) The extended phenology of Spartina invasion alters a native herbivorous insect's abundance and diet in a Chinese salt marsh. Biol Invasions 18:2229–2236

    Article  Google Scholar 

  • Kaukonen M, Ruotsalainen AL, Wali PR, Mannisto MK, Setala H, Saravesi K, Huusko K, Markkola A (2013) Moth herbivory enhances resource turnover in subarctic mountain birch forests? Ecology 94:267–272

    Article  PubMed  Google Scholar 

  • Keane RM, Crawley MJ (2002) Exotic plant invasions and the enemy release hypothesis. Trends Ecol Evol 17:164–170

    Article  Google Scholar 

  • Kodama T, Ichikawa T, Hidaka K, Furuya K (2015) A highly sensitive and large concentration range colorimetric continuous flow analysis for ammonium concentration. J Oceanogr 71:65–75

    Article  CAS  Google Scholar 

  • Lenoir L, Persson T, Bengtsson J, Wallander H, Wirén A (2007) Bottom–up or top–down control in forest soil microcosms? Effects of soil fauna on fungal biomass and C/N mineralisation. Biol Fertil Soils 43:281–294

    Article  Google Scholar 

  • Li B, Liao CZ, Zhang XD, Chen HL, Wang Q, Chen ZY, Gan XJ, Wu JH, Zhao B, Ma ZJ, Cheng X, Jiang LF, Chen JK (2009) Spartina alterniflora Invasions in the Yangtze River estuary, China: an overview of current status and ecosystem effects. Ecol Eng 35:511–520

    Article  CAS  Google Scholar 

  • Li H, Zhang X, Zheng R, Li X, Elmer WH, Wolfe LM, Li B (2014) Indirect effects of non-native Spartina alterniflora and its fungal pathogen (Fusarium palustre) on native saltmarsh plants in China. J Ecol 102:1112–1119

    Article  Google Scholar 

  • Liang X, Zheng H, He CQ, Xu QY, Zhan YW, Lei YR, Du W, Yang JN (2012) Allelopathic effcts of invasive Spartina alterniflora root exudates in soil on the offspring (seeds) of Scirpus mariqueter. Allelopath J 29:251–262

    Google Scholar 

  • Ma D, Ju R, Li B (2015) Preference of Laelia coenosa for native and introduced populations of invasive Spartina alterniflora. Biodivers Sci 23:101–108

    Article  Google Scholar 

  • Medina-Roldán E, Paz-Ferreiro J, Bardgett RD (2012) Grazing-induced effects on soil properties modify plant competitive interactions in semi-natural mountain grasslands. Oecologia 170:159–169

    Article  PubMed  Google Scholar 

  • Mikola J, Yeates GW, Barker GM, Wardle DA, Bonner KI (2001) Effects of defoliation intensity on soil food-web properties in an experimental grassland community. Oikos 92:333–343

    Article  Google Scholar 

  • Orrock JL, Dutra HP, Marquis RJ, Barber N (2015) Apparent competition and native consumers exacerbate the strong competitive effect of an exotic plant species. Ecology 96:1052–1061

    Article  PubMed  Google Scholar 

  • Parepa M, Schaffner U, Bossdorf O (2013) Help from under ground: soil biota facilitate knotweed invasion. Ecosphere 4:t31

    Article  Google Scholar 

  • Pejchar L, Mooney HA (2009) Invasive species, ecosystem services and human well-being. Trends Ecol Evol 24:497–504

    Article  PubMed  Google Scholar 

  • Peng RH, Fang CM, Li B, Chen JK (2011) Spartina alterniflora Invasion increases soil inorganic nitrogen pools through interactions with tidal subsidies in the Yangtze estuary, China. Oecologia 165:797–807

    Article  PubMed  Google Scholar 

  • Pineda A, Soler R, Pozo MJ, Rasmann S, Turlings TCJ (2015) Editorial: above-belowground interactions involving plants, microbes and insects. Front Plant Sci 6:318

    Article  PubMed  PubMed Central  Google Scholar 

  • Reinhart KO, Callaway RM (2006) Soil biota and invasive plants. New Phytol 170:445–457

    Article  PubMed  Google Scholar 

  • Rogers WE, Siemann E (2002) Effects of simulated herbivory and resource availability on native and invasive exotic tree seedlings. Basic Appl Ecol 3:297–307

    Article  Google Scholar 

  • Rogers WE, Siemann E (2004) Invasive ecotypes tolerate herbivory more effectively than native ecotypes of the Chinese tallow tree Sapium sebiferum. J Appl Ecol 41:561–570

    Article  Google Scholar 

  • Russell FL, Louda SM, Rand TA, Kachman SD (2007) Variation in herbivore-mediated indirect effects of an invasive plant on a native plant. Ecology 88:413–423

    Article  PubMed  Google Scholar 

  • Sankaran M, Augustine DJ (2004) Large herbivores suppress decomposer abundance in a semiarid grazing ecosystem. Ecology 85:1052–1061

    Article  Google Scholar 

  • Siemann E, Rogers WE (2003) Reduced resistance of invasive varieties of the alien tree Sapium sebiferum to a generalist herbivore. Oecologia 135:451–457

    Article  PubMed  Google Scholar 

  • Stanford G, Smith SJ (1972) Nitrogen mineralization potential of soil. Soil Sci Soc Am Proc 36:465–472

    Article  CAS  Google Scholar 

  • Stark S, Wardle DA, Ohtonen R, Helle T, Yeates GW (2000) The effect of reindeer grazing on decomposition, mineralization and soil biota in a dry oligotrophic scots pine forest. Oikos 90:301–310

    Article  Google Scholar 

  • Stark S, Strommer R, Tuomi J (2002) Reindeer grazing and soil microbial processes in two suboceanic and two subcontinental tundra heaths. Oikos 97:69–78

    Article  Google Scholar 

  • Strayer DL, Eviner VT, Jeschke JM, Pace ML (2006) Understanding the long-term effects of species invasions. Trends Ecol Evol 21:645–651

    Article  PubMed  Google Scholar 

  • Thelen GC, Vivanco JM, Newingham B, Good W, Bais HP, Landres P, Caesar A, Callaway RM (2005) Insect herbivory stimulates allelopathic exudation by an invasive plant and the suppression of natives. Ecol Lett 8:209–217

    Article  Google Scholar 

  • van Dam NM, Heil M (2011) Multitrophic interactions below and above ground: en route to the next level. J Ecol 99:77–88

    Article  Google Scholar 

  • Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for measuring soil microbial biomass C. Soil Biol Biochem 19:703–707

    Article  CAS  Google Scholar 

  • Vilà M, Espinar JL, Hejda M, Hulme PE, Jarošík V, Maron JL, Pergl J, Schaffner U, Sun Y, Pyšek P (2011) Ecological impacts of invasive alien plants: a meta-analysis of their effects on species, communities and ecosystems. Ecol Lett 14:702–708

    Article  PubMed  Google Scholar 

  • Wardle DA, Yeates GW (1993) The dual importance of competition and predation as regulatory forces in terrestrial ecosystems-evidence from decomposer food webs. Oecologia 93:303–306

    Article  CAS  PubMed  Google Scholar 

  • Wardle DA, Verhoef HA, Clarholm M (1998) Trophic relationships in the soil microfood-web: predicting the responses to a changing global environment. Glob Chang Biol 4:713–727

    Article  Google Scholar 

  • Wardle DA, Barker GM, Yeates GW, Bonner KI, Ghani A (2001) Introduced browsing mammals in New Zealand natural forests: aboveground and belowground consequences. Ecol Monogr 71:587–614

    Article  Google Scholar 

  • Wardle DA, Yeates GW, Williamson WM, Bonner KI, Barker GM (2004) Linking aboveground and belowground communities: the indirect influence of aphid species identity and diversity on a three trophic level soil food web. Oikos 107:283–294

    Article  Google Scholar 

  • Warning SA, Bremner JM (1964) Ammonium production in soil under waterlogged conditons as an index of nitrogen avaliabliity. Nature 201:951–952

    Article  Google Scholar 

  • Weidenhamer JD, Callaway RM (2010) Direct and indirect effects of invasive plants on soil chemistry and ecosystem function. J Chem Ecol 36:59–69

    Article  CAS  PubMed  Google Scholar 

  • Yeates GW, Williams PA (2001) Influence of three invasive weeds and site factors on soil microfauna in New Zealand. Pedobiologia 45:367–383

    Article  Google Scholar 

  • Yeates GW, Bongers T, Degoede R, Freckman DW, Georgieva SS (1993) Feeding-habits in soil nematode families and genera- an outline for soil ecologists. J Nematol 25:315–331

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang B, Zhou X, Zhou L, Ju R (2015) A global synthesis of below-ground carbon responses to biotic disturbance: a meta-analysis. Glob Ecol Biogeogr 24:126–138

    Article  Google Scholar 

  • Ziter C, MacDougall AS (2013) Nutrients and defoliation increase soil carbon inputs in grassland. Ecology 94:106–116

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Professor Anthony John Davy for his constructive comments on an early version of this manuscript. We also thank Ding Ma for assistance with preparing insect materials, Sikai Wang and Zaichao Yang for help with collecting plant and soil materials. This research was financially supported by National Basic Research Program of China (Grant No. 2013CB430404) and the National Natural Science Foundation of China (31670544).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jihua Wu.

Additional information

Responsible Editor: Hans Lambers.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Ju, R., Li, B. et al. Responses of soil biota and nitrogen availability to an invasive plant under aboveground herbivory. Plant Soil 415, 479–491 (2017). https://doi.org/10.1007/s11104-017-3179-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-017-3179-z

Keywords

Navigation