Skip to main content

Advertisement

Log in

Trichoderma-enriched organic fertilizer can mitigate microbiome degeneration of monocropped soil to maintain better plant growth

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

Investigating shifts in soil microbiomes driven by different fertilization regimes would be helpful for lessening the negative effect of monoculture in agricultural systems.

Methods

In the present work, we employed MiSeq sequencing to evaluate the response of local microbial communities to three different fertilization regimes, i.e., heavy chemical fertilizer application (CF) and reduced chemical fertilizer applications supplemented with organic (OF) or Trichoderma-enriched organic fertilizer (BF), in a continuous five-season pot experiment on tomato.

Results

The CF-treated soil resulted in a bacterial community with the lowest diversity, while the BF-treated soil had the highest diversity level. The OF-treated soil had the lowest diversity in the fungal community, while the CF- and BF-treated soils had higher diversity. Moreover, better plant growth and soil fertility status were obtained in the BF treatment followed by the OF and CF treatments.

Conclusions

Compared to the CF and OF regimes, reduced chemical fertilizer plus Trichoderma-enriched organic fertilizer (BF) is the most suitable regime to control microbiome degeneration of monocropped soil and to thus maintain tomato plant growth and health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Chaparro JM, Sheflin AM, Manter DK et al (2012) Manipulating the soil microbiome to increase soil health and plant fertility. Biol Fertil Soils 48:489–499. doi:10.1007/s00374-012-0691-4

    Article  Google Scholar 

  • Adesemoye AO, Kloepper JW (2009) Plant–microbes interactions in enhanced fertilizer-use efficiency. Appl Microbiol Biotechnol 85:1–12. doi:10.1007/s00253-009-2196-0

    Article  CAS  PubMed  Google Scholar 

  • Adesemoye AO, Torbert HA, Kloepper JW (2010) Increased plant uptake of nitrogen from 15 N-depleted fertilizer using plant growth-promoting rhizobacteria. Appl Soil Ecol 46:54–58. doi:10.1016/j.apsoil.2010.06.010

    Article  Google Scholar 

  • Ai C, Liang G, Sun J et al (2015) Reduced dependence of rhizosphere microbiome on plant-derived carbon in 32-year long-term inorganic and organic fertilized soils. Soil Biol Biochem 80:70–78. doi:10.1016/j.soilbio.2014.09.028

    Article  CAS  Google Scholar 

  • Bakker PAHM, Berendsen RL, Doornbos RF et al (2013) The rhizosphere revisited: root microbiomics. Front Plant Sci. doi:10.3389/fpls.2013.00165

    PubMed  PubMed Central  Google Scholar 

  • Berendsen RL, Pieterse CMJ, Bakker PAHM (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17:478–486. doi:10.1016/j.tplants.2012.04.001

    Article  CAS  PubMed  Google Scholar 

  • Bernard E, Larkin RP, Tavantzis S et al (2012) Compost, rapeseed rotation, and biocontrol agents significantly impact soil microbial communities in organic and conventional potato production systems. Appl Soil Ecol 52:29–41. doi:10.1016/j.apsoil.2011.10.002

    Article  Google Scholar 

  • Besemer K, Peter H, Logue JB, et al (2012) Unraveling assembly of stream biofilm communities. ISME J 6:1459–1468. doi:10.1038/ismej.2011.205

  • Cai F, Chen W, Wei Z et al (2015) Colonization of Trichoderma harzianum strain SQR-T037 on tomato roots and its relationship to plant growth, nutrient availability and soil microflora. Plant Soil 388:337–350. doi:10.1007/s11104-014-2326-z

    Article  CAS  Google Scholar 

  • Cai F, Yu G, Wang P, et al (2013) Harzianolide, a novel plant growth regulator and systemic resistance elicitor from Trichoderma harzianum. Plant Physiol Biochem 73:106–113. doi:10.1016/j.plaphy.2013.08.011

  • Caporaso JG, Kuczynski J, Stombaugh J et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336. doi:10.1038/nmeth.f.303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carter MR, Sanderson JB (2001) Influence of conservation tillage and rotation length on potato productivity, tuber disease and soil quality parameters on a fine sandy loam in eastern Canada. Soil Tillage Res 63:1–13. doi:10.1016/S0167-1987(01)00224-0

    Article  Google Scholar 

  • Chen L, Yang X, Raza W et al (2011) Trichoderma harzianum SQR-T037 rapidly degrades allelochemicals in rhizospheres of continuously cropped cucumbers. Appl Microbiol Biotechnol 89:1653–1663. doi:10.1007/s00253-010-2948-x

    Article  CAS  PubMed  Google Scholar 

  • da Costa PB, Beneduzi A, de Souza R et al (2012) The effects of different fertilization conditions on bacterial plant growth promoting traits: guidelines for directed bacterial prospection and testing. Plant Soil 368:267–280. doi:10.1007/s11104-012-1513-z

    Article  Google Scholar 

  • Fu L, Ruan Y, Tao C et al (2016) Continous application of bioorganic fertilizer induced resilient culturable bacteria community associated with banana fusarium wilt suppression. Sci Rep. doi:10.1038/srep27731

    Google Scholar 

  • Garbeva P, van Veen JA, van Elsas JD (2004) Microbial diversity in soil: selection microbial populations by plant and soil type and implications for disease suppressiveness. Annu Rev Phytopathol 42:243–270. doi:10.1146/annurev.phyto.42.012604.135455

    Article  CAS  PubMed  Google Scholar 

  • Harman GE, Howell CR, Viterbo A et al (2004) Trichoderma species — opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43–56. doi:10.1038/nrmicro797

    Article  CAS  PubMed  Google Scholar 

  • Huang L-F, Song L-X, Xia X-J et al (2013) Plant-soil feedbacks and soil sickness: from mechanisms to application in agriculture. J Chem Ecol 39:232–242. doi:10.1007/s10886-013-0244-9

    Article  CAS  PubMed  Google Scholar 

  • Jumpponen A, Jones KL (2010) Seasonally dynamic fungal communities in the Quercus macrocarpa phyllosphere differ between urban and nonurban environments. New Phytol 186:496–513. doi:10.1111/j.1469-8137.2010.03197.x

    Article  CAS  PubMed  Google Scholar 

  • Leaw SN, Chang HC, Sun HF, et al (2006) Identification of medically important yeast species by sequence analysis of the internal transcribed spacer regions. J Clin Microbiol 44:693–699. doi:10.1128/JCM.44.3.693-699.2006

  • Li C, Li X, Kong W et al (2010) Effect of monoculture soybean on soil microbial community in the Northeast China. Plant Soil 330:423–433. doi:10.1007/s11104-009-0216-6

    Article  CAS  Google Scholar 

  • Li R, Shen Z, Sun L et al (2016) Novel soil fumigation method for suppressing cucumber fusarium wilt disease associated with soil microflora alterations. Appl Soil Ecol 101:28–36. doi:10.1016/j.apsoil.2016.01.004

    Article  Google Scholar 

  • Li R-X, Cai F, Pang G et al (2015) Solubilisation of phosphate and micronutrients by Trichoderma harzianum and its relationship with the promotion of tomato plant growth. PLoS One 10:e0130081. doi:10.1371/journal.pone.0130081

    Article  PubMed  PubMed Central  Google Scholar 

  • Lichtfouse E (ed) (2011) Genetics, biofuels and local farming systems. Springer Netherlands, Dordrecht

    Google Scholar 

  • Mo AS, Qiu ZQ, He Q et al (2016) Effect of continuous monocropping of tomato on soil microorganism and microbial biomass carbon. Commun Soil Sci Plant Anal 47:1069–1077. doi:10.1080/00103624.2016.1165832

    Article  CAS  Google Scholar 

  • Molla AH, Haque MM, Haque MA et al (2012) Trichoderma-enriched biofertilizer enhances production and nutritional quality of tomato (Lycopersicon esculentum mill.) and minimizes NPK fertilizer use. Agric Res 1:265–272. doi:10.1007/s40003-012-0025-7

    Article  CAS  Google Scholar 

  • Nayyar A, Hamel C, Lafond G et al (2009) Soil microbial quality associated with yield reduction in continuous-pea. Appl Soil Ecol 43:115–121. doi:10.1016/j.apsoil.2009.06.008

    Article  Google Scholar 

  • Ofek M, Voronov-Goldman M, Hadar Y et al (2014) Host signature effect on plant root-associated microbiomes revealed through analyses of resident vs. active communities. Environ Microbiol 16:2157–2167. doi:10.1111/1462-2920.12228

    Article  CAS  PubMed  Google Scholar 

  • Redecker D, Raab P (2006) Phylogeny of the Glomeromycota (arbuscular mycorrhizal fungi): recent developments and new gene markers. Mycologia 98:885–895. doi:10.3852/mycologia.98.6.885

    Article  PubMed  Google Scholar 

  • Ryan PR, Dessaux Y, Thomashow LS et al (2009) Rhizosphere engineering and management for sustainable agriculture. Plant Soil 321:363–383. doi:10.1007/s11104-009-0001-6

    Article  CAS  Google Scholar 

  • Shen Z, Wang D, Ruan Y et al (2014) Deep 16S rRNA pyrosequencing reveals a bacterial community associated with banana fusarium wilt disease suppression induced by bio-organic fertilizer application. PLoS One 9:e98420. doi:10.1371/journal.pone.0098420

    Article  PubMed  PubMed Central  Google Scholar 

  • Simpson RJ, Oberson A, Culvenor RA et al (2011) Strategies and agronomic interventions to improve the phosphorus-use efficiency of farming systems. Plant Soil 349:89–120. doi:10.1007/s11104-011-0880-1

    Article  CAS  Google Scholar 

  • Somai BM, Dean RA, Farnham MW, et al (2002) Internal transcribed spacer regions 1 and 2 and random amplified polymorphic DNA analysis of Didymella bryoniae and related Phoma species isolated from cucurbits. Phytopathology 92:997–1004. doi:10.1094/PHYTO.2002.92.9.997

  • ter Braak CJF, Šmilauer P (2002) CANOCO reference manual and CanoDraw for windows user’s guide: Software for canonical community ordination (version 4.5). Biometris, Ithaca NY

  • Tian W, Wang L, Li Y et al (2015) Responses of microbial activity, abundance, and community in wheat soil after three years of heavy fertilization with manure-based compost and inorganic nitrogen. Agric Ecosyst Environ 213:219–227. doi:10.1016/j.agee.2015.08.009

    Article  CAS  Google Scholar 

  • Trillas MI, Segarra G (2009) Interactions between nonpathogenic fungi and plants. In: van Loon LC (ed) Advances in botanical research. Elsevier, Amsterdam, pp 321–359. doi: 10.1016/S0065-2296(09)51008-7

  • Wang B, Li R, Ruan Y et al (2015) Pineapple–banana rotation reduced the amount of Fusarium oxysporum more than maize–banana rotation mainly through modulating fungal communities. Soil Biol Biochem 86:77–86. doi:10.1016/j.soilbio.2015.02.021

    Article  CAS  Google Scholar 

  • Ward NL, Challacombe JF, Janssen PH et al (2009) Three genomes from the phylum Acidobacteria provide insight into the lifestyles of these microorganisms in soils. Appl Environ Microbiol 75:2046–2056. doi:10.1128/AEM.02294-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong W, Zhao Q, Xue C et al (2016) Comparison of fungal community in black pepper-vanilla and vanilla monoculture systems associated with vanilla fusarium wilt disease. Front Microbiol. doi:10.3389/fmicb.2016.00117

    Google Scholar 

  • Xu L, Ravnskov S, Larsen J et al (2012) Linking fungal communities in roots, rhizosphere, and soil to the health status of Pisum sativum. FEMS Microbiol Ecol 82:736–745. doi:10.1111/j.1574-6941.2012.01445.x

    Article  CAS  PubMed  Google Scholar 

  • Xun W, Huang T, Zhao J et al (2015) Environmental conditions rather than microbial inoculum composition determine the bacterial composition, microbial biomass and enzymatic activity of reconstructed soil microbial communities. Soil Biol Biochem 90:10–18. doi:10.1016/j.soilbio.2015.07.018

    Article  CAS  Google Scholar 

  • Yuan J, Chaparro JM, Manter DK et al (2015) Roots from distinct plant developmental stages are capable of rapidly selecting their own microbiome without the influence of environmental and soil edaphic factors. Soil Biol Biochem 89:206–209. doi:10.1016/j.soilbio.2015.07.009

    Article  CAS  Google Scholar 

  • Zhang F, Zhu Z, Yang X et al (2013) Trichoderma harzianum T-E5 significantly affects cucumber root exudates and fungal community in the cucumber rhizosphere. Appl Soil Ecol 72:41–48. doi:10.1016/j.apsoil.2013.05.016

    Article  Google Scholar 

  • Zhao J, Zhang R, Xue C et al (2014) Pyrosequencing reveals contrasting soil bacterial diversity and community structure of two main winter wheat cropping systems in China. Microb Ecol 67:443–453. doi:10.1007/s00248-013-0322-0

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research was financially supported by 973 program (2015CB150500) and National Key Technology R&D Program of the Ministry of Science and Technology of China (2013BAD20B05 and L0201400202) and Jiangsu Science and Technology Department (BK20150059).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Chen.

Additional information

Responsible Editor: Stéphane Compant.

Electronic supplementary material

Figure S1

Rarefaction curves of bacterial (a) and fungal (b) communities based on observed OTUs at 3% distance for individual sample. (GIF 90 kb)

High resolution image (TIFF 2077 kb)

Figure S2

Principal Coordinate Analysis (PCoA) based on the unweighted Unifrac algorithm to visualize the pairwise community dissimilarity of the bacterial (a) and fungal (b) communities in the different soil samples. CF: 100% chemical fertilizer; BF: 75% chemical fertilizer + bioorganic fertilizer; OF: 75% chemical fertilizer + organic fertilizer. (GIF 37 kb)

High resolution image (TIFF 1913 kb)

Figure S3

Tomato seedlings grown in the three soils four weeks post transplanting. CF: 100% chemical fertilizer; BF: 75% chemical fertilizer + bioorganic fertilizer; OF: 75% chemical fertilizer + organic fertilizer. (GIF 600 kb)

High resolution image (TIFF 20033 kb)

Figure S4

Heatmap of the bacterial (a) and fungal (b) distributions of the top 100 abundant genera present in all of the soil samples. The relative abundances of bacterial and fungal genera are indicated by colour intensity. (GIF 623 kb)

High resolution image (TIFF 3251 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pang, G., Cai, F., Li, R. et al. Trichoderma-enriched organic fertilizer can mitigate microbiome degeneration of monocropped soil to maintain better plant growth. Plant Soil 416, 181–192 (2017). https://doi.org/10.1007/s11104-017-3178-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-017-3178-0

Keywords

Navigation