Skip to main content

Advertisement

Log in

Short-term waterlogging increases arbuscular mycorrhizal fungal species richness and shifts community composition

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

Our aim was to investigate the effects of short-term waterlogging in shaping communities of the obligately aerobic AMF in roots of Populus deltoides.

Methods

AMF community in populus roots was deciphered with 454-pyrosequencing method from a field plot before and after 15 days waterlogging.

Results

We found that short-term waterlogging significantly altered the AMF community as confirmed with NMDS. Indicator species analysis identified 12 AMF OTUs that shown with different relative abundance between before and after waterlogging. In contrast to expectation, short-term waterlogging increased detectable AMF species richness: 4 OTUs were detected only before and 17 only after waterlogging.

Conclusions

Variation in abundance of dominant OTUs was possibly due to short-term waterlogging disturbance and the role of competitive release in the increase in species richness following waterlogging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Armstrong W, Webb T (1985) A critical oxygen pressure for root extension in rice. J Exp Bot 36:1573–1582

    Article  Google Scholar 

  • Baar J, Paradi I, Lucassen E, Hudson-Edwards KA, Redecker D, Roelofs J, Smolders AJP (2011) Molecular analysis of AMF diversity in aquatic macrophytes: A comparison of oligotrophic and utra-oligotrophic lakes. Aquat Bot 94:53–61

    Article  CAS  Google Scholar 

  • Bertness MD, Ellison AM (1987) Determinants of pattern in a New England saltmarsh plant community. Ecol Monogr 57:129–147

    Article  Google Scholar 

  • Bik HM, Porazinska DL, Creer S, Caporaso JG, Knight R, Thomas WK (2012) Sequencing our way towards understanding global eukaryotic biodiversity. Trends Ecol Evol 27:233–243

    Article  PubMed  PubMed Central  Google Scholar 

  • Bray JR, Curtis JT (1957) An ordination of upland forest communities of southern Wisconsin. Ecol Monogr 27:325–349

    Article  Google Scholar 

  • Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010a) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caporaso JG, Bittinger K, Bushman FD, DeSantis TZ, Andersen GL, Knight R (2010b) PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics 26:266–267

    Article  CAS  PubMed  Google Scholar 

  • Connell JH (1978) Diversity in tropical rain forests and coral reefs. Science 199:1302–1310

    Article  CAS  PubMed  Google Scholar 

  • Davison J, Öpik M, Zobel M, Vasar M, Metsis M, Moora M (2012) Communities of arbuscular mycorrhizal fungi detected in forest soil are spatially heterogeneous but do not vary throughout the growing season. PLoS One 7:e41938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Cáceres M, Legendre P (2009) Associations between species and groups of sites: indices and statistical inference. Ecology 90:3566–3574

    Article  PubMed  Google Scholar 

  • Dickie IA, Martinez-Garcia LB, Koele N, Grelet GA, Tylianakis JM, Peltzer DA, Richardson SJ (2013) Mycorrhizas and mycorrhizal fungal communities throughout ecosystem development. Plant Soil 367:11–39

    Article  CAS  Google Scholar 

  • Dumbrell AJ, Nelson M, Helgason T, Dytham C, Fitter AH (2010a) Idiosyncrasy and overdominance in the structure of natural communities of arbuscular mycorrhizal fungi: is there a role for stochastic processes? J Ecol 98:419–428

    Article  Google Scholar 

  • Dumbrell AJ, Nelson M, Helgason T, Dytham C, Fitter AH (2010b) Relative roles of niche and neutral processes in structuring a soil microbial community. ISME J 4:337–345

    Article  PubMed  Google Scholar 

  • Dumbrell AJ, Ashton PD, Aziz N, Feng G, Nelson M, Dytham C, Fitter AH, Helgason T (2011) Distinct seasonal assemblages of arbuscular mycorrhizal fungi revealed by massively parallel pyrosequencing. New Phytol 190:794–804

    Article  CAS  PubMed  Google Scholar 

  • Faith DP (1992) Conservation evaluation and phylogenetic diversity. Biol Conserv 61:1–10

    Article  Google Scholar 

  • Feinstein LM, Blackwood CB (2012) Taxa-area relationship and neutral dynamics influence the diversity of fungal communities on senesced tree leaves. Environ Microbiol 14:1488–1499

    Article  CAS  PubMed  Google Scholar 

  • Fitzsimons MS, Miller RM, Jastrow JD (2008) Scale-dependent niche axes of arbuscular mycorrhizal fungi. Oecologia 158:117–127

    Article  PubMed  Google Scholar 

  • Giovannetti M, Mosse B (1980) An evaluation of techniques for measuring vesicular–arbuscular mycorrhizal infection in roots. New Phytol 84:489–500

    Article  Google Scholar 

  • Gosling P, Mead A, Proctor M, Hammond JP, Bending GD (2013) Contrasting arbuscular mycorrhizal communities colonizing different host plants show a similar response to a soil phosphorus concentration gradient. New Phytol 198:546–556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grilli G, Urcelay C, Galetto L, Davison J, Vasar M, Saks Ü, Jairus T, Öpik M (2015) The composition of arbuscular mycorrhizal fungal communities in the roots of a ruderal forb is not related to the forest fragmentation process. Environ Microbiol 17:2709–2720

    Article  PubMed  Google Scholar 

  • Hazard C, Gosling P, van der Gast CJ, Mitchell DT, Doohan FM, Bending GD (2013) The role of local environment and geographical distance in determining community composition of arbuscular mycorrhizal fungi at the landscape scale. ISME J 7:498–508

    Article  CAS  PubMed  Google Scholar 

  • Hiiesalu I, Partel M, Davison J, Gerhold P, Metsis M, Moora M, Ouml, Öpik M, Vasar M, Zobel M, Wilson SD (2014) Species richness of arbuscular mycorrhizal fungi: associations with grassland plant richness and biomass. New Phytol 203:233–244

    Article  CAS  PubMed  Google Scholar 

  • Hubbell SP (2001) The unified neutral theory of biodiversity and biogeography (MPB-32), Princeton University Press

  • Husband R, Herre EA, Turner SL, Gallery R, Young JPW (2002) Molecular diversity of arbuscular mycorrhizal fungi and patterns of host association over time and space in a tropical forest. Mol Ecol 11:2669–2678

    Article  CAS  PubMed  Google Scholar 

  • Hutchinson G (1957) Concluding remarks.: Cold Spring Harbor Symposia on Quantitative Biology. Yale University, New Haven

    Google Scholar 

  • Jabot F, Etienne RS, Chave J (2008) Reconciling neutral community models and environmental filtering: theory and an empirical test. Oikos 117:1308–1320

  • Jakobsen I, Abbott L, Robson A (1992) External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum L. 1. Spread of hyphae and phosphorus inflow into roots. New Phytol 120:371–379

    Article  CAS  Google Scholar 

  • Khan AG (1993a) Occurrence and importance of mycorrhizae in aquatic trees of New South Wales, Australia. Mycorrhiza 3:331–338

    Article  Google Scholar 

  • Khan AG (1993b) The influence of redox potential of formation of mycorrhizae in trees from wetland and waterlogged areas of New South Wales, Australia. In: Abstract of 9th North America Conference on Mycorrhizae, Aug. 8–12. Guelph, Ontario: University of Guelph, 18

  • Kludze HK, Delaune RD, Partick WH (1993) Aerenchyma formation and methane and oxygen exchange in rice. Soil Sci Soc Am J 57:386–391

    Article  CAS  Google Scholar 

  • Leibold MA, McPeek MA (2006) Coexistence of the niche and neutral perspectives in community ecology. Ecology 87:1399–1410

    Article  PubMed  Google Scholar 

  • Lekberg Y, Schnoor T, Kjoller R, Gibbons SM, Hansen LH, Al-Soud WA, Sorensen SJ, Rosendahl S (2012) 454-sequencing reveals stochastic local reassembly and high disturbance tolerance within arbuscular mycorrhizal fungal communities. J Ecol 100:151–160

    Article  Google Scholar 

  • Li LF, Li T, Zhang Y, Zhao ZW (2010) Molecular diversity of arbuscular mycorrhizal fungi and their distribution patterns related to host-plants and habitats in a hot and arid ecosystem, southwest China. FEMS Microbiol Ecol 71:418–427

    Article  CAS  PubMed  Google Scholar 

  • Lin XG, Feng YZ, Zhang HY, Chen RR, Wang JH, Zhang JB, Chu HY (2012) Long-Term Balanced Fertilization Decreases Arbuscular Mycorrhizal Fungal Diversity in an Arable Soil in North China Revealed by 454 Pyrosequencing. Environ Sci Technol 46:5764–5771

    Article  CAS  PubMed  Google Scholar 

  • Lovelock CE, Andersen K, Morton JB (2003) Arbuscular mycorrhizal communities in tropical forests are affected by host tree species and environment. Oecologia 135:268–279

    Article  PubMed  Google Scholar 

  • Lozupone C, Knight R (2005) UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol 71:8228–8235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lozupone CA, Hamady M, Kelley ST, Knight R (2007) Quantitative and qualitative diversity measures lead to different insights into factors that structure microbial communities. Appl Environ Microbiol 73:1576–1585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lumini E, Orgiazzi A, Borriello R, Bonfante P, Bianciotto V (2010) Disclosing arbuscular mycorrhizal fungal biodiversity in soil through a land-use gradient using a pyrosequencing approach. Environ Microbiol 12:2165–2179

    CAS  PubMed  Google Scholar 

  • MacArthur R (1957) On the relative abundance of bird species. Proc Natl Acad Sci U S A 43:293–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macek I, Dumbrell AJ, Nelson M, Fitter AH, Vodnik D, Helgason T (2011) Local Adaptation to Soil Hypoxia Determines the Structure of an Arbuscular Mycorrhizal Fungal Community in Roots from Natural CO2 Springs. Appl Environ Microbiol 77:4770–4777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGill BJ, Rampal S, Etienne JS, Gray DA, Anderson MJ, Benecha HK, Dornelas M, Enquist BJ, Green JL, He F, Hurlbert AH, Magurran AE, Marquet PA, Maurer BA, Ostling A, Soykan CU, Ugland KI, White EP (2007) Species abundance distribution: moving beyond single prediction theories to integration within an ecological framework. Ecol Lett 10:995–1015

    Article  PubMed  Google Scholar 

  • Miller SP, Bever JD (1999) Distribution of arbuscular mycorrhizal fungi in stands of the wetland grass Panicum hemitomon along a wide hydrologic gradient. Oecologia 119:586–592

    Article  Google Scholar 

  • Miller SP, Sharitz RR (2000) Manipulation of flooding and arbuscular mycorrhizal formation inflences growth and nutrition of two semiaquatic species. Funct Ecol 14:738–748

    Article  Google Scholar 

  • Motomura I (1932) On the statistical treatment of communities. Zool Mag 44:379–383

    Google Scholar 

  • Nielsen KB, Kjoller R, Olsson PA, Schweiger PF, Andersen F, Rosendahl S (2004) Colonisation and molecular diversity of arbuscular mycorrhizal fungi in the aquatic plants Littorella uniflora and Lobelia dortmanna in southern Sweden. Mycol Res 108:616–625

    Article  CAS  PubMed  Google Scholar 

  • Ohsowski BM, Zaitsoff PD, Opik M, Hart MM (2014) Where the wild things are: looking for uncultured Glomeromycota. New Phytol 204:171–179

    Article  PubMed  Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara, RB, Simpson, GL, Solymos, P, Stevens, MHH, Wagner, H (2013) Vegan: community ecology package. R package version 2.0–10. http://CRAN.R-project.org/package=vegan

  • Opik M, Moora M, Liira J, Zobel M (2006) Composition of root-colonizing arbuscular mycorrhizal fungal communities in different ecosystems around the globe. J Ecol 94:778–790

    Article  Google Scholar 

  • Öpik M, Metsis M, Daniell T, Zobel M, Moora M (2009) Large-scale parallel 454 sequencing reveals host ecological group specificity of arbuscular mycorrhizal fungi in a boreonemoral forest. New Phytol 184:424–437

    Article  PubMed  Google Scholar 

  • Opik M, Vanatoa A, Vanatoa E, Moora M, Davison J, Kalwij JM, Reier U, Zobel M (2010) The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota). New Phytol 188:223–241

    Article  CAS  PubMed  Google Scholar 

  • Opik M, Zobel M, Cantero JJ, Davison J, Facelli JM, Hiiesalu I, Jairus T, Kalwij JM, Koorem K, Leal ME, Liira J, Metsis M, Neshataeva V, Paal J, Phosri C, Polme S, Reier U, Saks U, Schimann H, Thiery O, Vasar M, Moora M (2013) Global sampling of plant roots expands the described molecular diversity of arbuscular mycorrhizal fungi. Mycorrhiza 23:411–430

    Article  PubMed  Google Scholar 

  • Price MN, Dehal PS, Arkin AP (2009) FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol 26:1641–1650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • R Development Core Team (2007) R: a language and environment for statistical computing.R Foundation for Statistical Computing,Vienna. http://www.R-project.org

  • Sah S, Reed S, Jayachandran K, Dunn C, Fisher JB (2006) The effect of repeated short-term flooding on mycorrhizal survival in snap bean roots. Hortscience 41:598–602

    Google Scholar 

  • Sengupta A, Chaudhuri S (2002) Arbuscular mycorrhizal relations of mangrove plant community at the Ganges river estuary in India. Mycorrhiza 12:169–174

    Article  PubMed  Google Scholar 

  • Shaw AK, Halpern AL, Beeson K, Tran B, Venter JC, Martiny JBH (2008) It’s all relative: ranking the diversity of aquatic bacterial communities. Environ Microbiol 10:2200–2210

    Article  PubMed  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd ed., Academic press

  • Sudova R, Rydlova J, Ctvrtlikova M, Havranek P, Adamec L (2011) The incidence of arbuscular mycorrhiza in two submerged Isoetes species. Aquat Bot 94:183–187

    Article  Google Scholar 

  • Vallino M, Massa N, Lumini E, Bianciotto V, Berta G, Bonfante P (2006) Assessment of arbuscular mycorrhizal fungal diversity in roots of Solidago gigantea growing in a polluted soil in Northern Italy. Environ Microbiol 8:971–983

    Article  PubMed  Google Scholar 

  • van der Heijden MGA (2010) Mycorrhizal fungi reduce nutrient loss from model grassland ecosystems. Ecology 91:1163–1171

    Article  PubMed  Google Scholar 

  • van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72

    Article  Google Scholar 

  • van der Heijden MGA, Wiemken A, Sanders IR (2003) Different arbuscular mycorrhizal fungi alter coexistence and resource distribution between co-occurring plant. New Phytol 157:569–578

    Article  Google Scholar 

  • van der Heijden MGA, Streitwolf-Engel R, Riedl R, Siegrist S, Neudecker A, Ineichen K, Boller T, Wiemken A, Sanders IR (2006) The mycorrhizal contribution to plant productivity, plant nutrition and soil structure in experimental grassland. New Phytol 172:739–752

    Article  PubMed  Google Scholar 

  • van Diepen LTA, Lilleskov EA, Pregitzer KS (2011) Simulated nitrogen deposition affects community structure of arbuscular mycorrhizal fungi in northern hardwood forests. Mol Ecol 20:799–811

    Article  Google Scholar 

  • Vandenkoornhuyse P, Ridgway K, Watson I, Fitter A, Young J (2003) Co-existing grass species have distinctive arbuscular mycorrhizal communities. Mol Ecol 12:3085–3095

    Article  CAS  PubMed  Google Scholar 

  • Wagg C, Jansa J, Stadler M, Schmid B, van der Heijden MGA (2011) Mycorrhizal fungal identity and diversity relaxes plant-plant competition. Ecology 92:1303–1313

    Article  PubMed  Google Scholar 

  • Wang Y, Huang Y, Qiu Q, Xin G, Yang Z, Shi S (2011) Flooding greatly affects the diversity of arbuscular mycorrhizal fungi communities in the roots of wetland plants. PLoS One 6:e24512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watanarojanaporn N, Boonkerd N, Tittabutr P, Longtonglang A, Young JPW, Teaumroong N (2013) Effect of rice cultivation systems on indigenous arbuscular mycorrhizal fungal community structure. Microbes Environ 28:316–324

    Article  PubMed  PubMed Central  Google Scholar 

  • Wirsel SGR (2004) Homogenous stands of a wetland grass harbour diverse consortia of arbuscular mycorrhizal fungi. FEMS Microbiol Ecol 48:129–138

    Article  CAS  PubMed  Google Scholar 

  • Wu ZM, Sun QX, Chen MG (2001) Biomass and nutrient accumulation of poplar plantation on beach land in Yangtze River in Anhui province. Chin J Appl Ecol 12:806–810

    Google Scholar 

  • Yang R, Zan S, Tang J, Chen X, Zhang Q (2010) Variation in community structure of arbuscular mycorrhizal fungi associated with a Cu tolerant plant- Elsholtzia splendens. Appl Soil Ecol 44:191–197

    Article  Google Scholar 

  • Yang HS, Zang YY, Yuan YG, Tang JJ, Chen X (2012) Selectivity by host plants affects the distribution of arbuscular mycorrhizal fungi: evidence from ITS rDNA sequence metadata. BMC Evol Biol 12:50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are grateful to Maarja Öpik (University of Tartu) and Stefano Ghignone (National Research Council, Italy) for providing QIIME formatted MaarjAM database. This work was supported by Natural Science Foundation of China (No. 31300105, No.41071334and No. 31400373), the Central Public-interest Scientific Institution Basal Research Fund (No.RIF2012-08, CAFYBB2014QB003), and PAPD Fund of Nanjing Agricultural University (No. 80900314).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qian Zhang.

Ethics declarations

Conflict of Interest

All authors declare no conflict of interest.

Additional information

Responsible Editor: Timothy Cavagnaro.

Electronic supplementary materials

ESM 1

(DOCX 34 kb)

ESM 2

(DOCX 36 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Koide, R.T. & Zhang, Q. Short-term waterlogging increases arbuscular mycorrhizal fungal species richness and shifts community composition. Plant Soil 404, 373–384 (2016). https://doi.org/10.1007/s11104-016-2850-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-016-2850-0

Keywords

Navigation