Skip to main content
Log in

Epichloë endophytes affect the nutrient and fiber content of Lolium perenne regardless of plant genotype

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and Aims

Epichloë endophytes inhabit aerial grass tissues but they can modify belowground processes that might affect host nutrient balance. We aimed to determine the effects of endophyte status (E+=endophyte-infected; E−=non-infected) and three Epichloë morphotypes (M1,M2,M3) on growth and nutrient content of a heterogeneous set of naturally infected asymptomatic plants of Lolium perenne. In addition, plant parameters were compared between asymptomatic E+ and plants with choke disease.

Methods

A field experiment was conducted with 194 plants obtained from six natural populations (97E+, 97E−). For each E+ plant, the endophyte morphotype it hosted was known.

Results

Endophyte-infected plants had significantly lower P, Ca, S, B, neutral detergent fiber and lignin contents, and higher Mn and digestibility than E−, independently of plant origin. Biomass production was affected by plant origin but not by endophytes. No effect of Epichloë morphotypes in any parameter was found. However, asymptomatic E+ and choke diseased plants differed in nutrients, fibers, and digestibility.

Conclusions

An endophyte effect was detected in nutrient and fiber content, in spite of the heterogeneous constitution of the plant and fungal material used. The results obtained indicate that Epichloë may affect above and possibly underground processes involved in nutrient absorption, as well as plant quality, what may potentially affect litter decomposition processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Antunes PM, Miller J, Carvalho LM, Klironomos JN, Newman JA (2008) Even after death the endophytic fungus of Schedonorus phoenix reduces the arbuscular mycorrhizas of other plants. Funct Ecol 22:912–918

    Article  Google Scholar 

  • Barker DJ, Hume DE, Quigley PE (1997) Negligible physiological responses to water deficit in endophyte-infected and uninfected perennial ryegrass. In: Bacon CW, Hill NS (eds) Neotyphodium/Grass interactions. Plenus Press, New York, pp 137–139

    Chapter  Google Scholar 

  • Berg B, De Santo AV, Rutigliano FA, Fierro A, Ekbohm G (2003) Limit values for plant litter decomposing in two contrasting soils - Influence of litter elemental composition. Acta Oecol 24:295–302

    Article  Google Scholar 

  • Bony S, Pichon N, Ravel C, Durix A, Balfourier F, Guillaumin JJ (2001) The relationship between mycotoxin synthesis and isolate morphology in fungal endophytes of Lolium perenne. New Phytol 152:125–137

    Article  CAS  Google Scholar 

  • Bush LP, Wilkinson HH, Schardl CL (1997) Bioprotective alkaloids of grass-fungal endophyte symbioses. Plant Physiol 114:1–7

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cheplick GP, Cho R (2003) Interactive effects of fungal endophyte infection and host genotype on growth and storage in Lolium perenne. New Phytol 158:183–191

    Article  Google Scholar 

  • Cheplick GP, Perera A, Koulouris K (2000) Effect of drought on the growth of Lolium perenne genotypes with and without fungal endophytes. Funct Ecol 14:657–667

    Article  Google Scholar 

  • Chu-Chou M, Guo B, An Z-Q, Hendrix J, Ferriss R, Siegel M, Dougherty C, Burrus P (1992) Suppression of mycorrhizal fungi in fescue by the Acremonium coenophialum endophyte. Soil Biol Biochem 24:633–637

    Article  Google Scholar 

  • Clay K, Schardl CL (2002) Evolutionary origen and ecological consequences of endophyte symbiosis with grasses. Am Nat 160:99–127

    Article  Google Scholar 

  • FAO/UNESCO (1998) World reference base for soil resources. FAO/UNESCO, Rome

    Google Scholar 

  • Fioretto A, Di Nardo C, Papa S, Fuggi A (2005) Lignin and cellulose degradation and nitrogen dynamics during decomposition of three leaf litter species in a Mediterranean ecosystem. Soil Biol Biochem 37:1083–1091

    Article  CAS  Google Scholar 

  • Franzluebbers AJ, Nazih N, Stuedemann JA, Fuhrmann JJ, Schomberg HH, Hartel PG (1999) Soil carbon and nitrogen pools under low- and high-endophyte-infected tall fescue. Soil Sci Soc Am J 63:1687–1694

    Article  CAS  Google Scholar 

  • Fritz JO, Collins M (1991) Yield, digestibility, and chemical composition of endophyte free and infected tall fescue. Agron J 83:537–541

    Article  CAS  Google Scholar 

  • Goering HK, Van Soest PJ (1970) Forage fiber analyses (Apparatus, Reagents, Procedures, and Some Applications). U.S. Agricultural Research Service, Washington, DC

    Google Scholar 

  • Güsewell S, Gessner MO (2009) N:P ratios influence litter decomposition and colonization by fungi and bacteria in microcosms. Funct Ecol 23:211–219

    Article  Google Scholar 

  • Hesse U, Hahn H, Andreeva K, Forster K, Warnstorff K, Schoberlein W, Diepenbrock W (2004) Investigations on the influence of Neotyphodium endophytes on plant growth and seed yield of Lolium perenne genotypes. Crop Sci 44:1689–1695

    Article  Google Scholar 

  • Hume DE, Sewell C (2014) Agronomic adantages coferred by endophyte infection of perennial ryegrass (Lolium perenne L.) and tall fescue (Festuca arundinacea Schreb.) in Australia. Crop Pasture Sci 65:747–757

    Article  Google Scholar 

  • Humphry JB, Coffey KP, Moyer JL, Brazle FK, Lomas LW (2002) Intake, digestion, and digestive characteristics of Neotyphodium coenophialum-infected and uninfected fescue by heifers offered hay diets supplemented with Aspergillus oryzae fermentation extract or laidlomycin propionate. J Anim Sci 80:225–234

    CAS  PubMed  Google Scholar 

  • Jeffries P, Gianinazzi S, Perotto S, Turnau K, Barea JM (2003) The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biol Fert Soils 37:1–16

    Google Scholar 

  • Johnson JM, Aiken GE, Phillips TD, Barrett M, Klotz JL, Schrick FN (2012) Steer and pasture responses for a novel endophyte tall fescue developed for the upper transition zone. J Anim Sci 90:2402–2409

    Article  CAS  PubMed  Google Scholar 

  • Jones DIH, Thomas TA (1987) Minerals in pastures and supplements. In: Snaydon RW (ed) Managed grasslands. Ecosystems of the world, vol 17B. Elsevier, Amsterdam, pp 145–153

    Google Scholar 

  • Jungk AO (2002) Dynamics of nutrient movement at the soil-root interface. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half. CRC Press, New York, pp 455–481

    Google Scholar 

  • Kane KH (2011) Effects of endophyte infection on drought stress tolerance of Lolium perenne accessions from the Mediterranean region. Environ Exp Bot 71:337–344

    Google Scholar 

  • Kuldau G, Bacon C (2008) Clavicipitaceous endophytes: their ability to enhance resistance of grasses to multiple stresses. Biol Control 46:57–71

    Article  Google Scholar 

  • Lemons A, Clay K, Rudgers JA (2005) Connecting plant-microbial interactions above and belowground: a fungal endophyte affects decomposition. Oecologia 145:595–604

    Article  PubMed  Google Scholar 

  • Leuchtmann A, Bacon C, Schardl C, White JF Jr, Tadych M (2014) Nomenclatural realignment of Neotyphodium species with genus Epichloë. Mycologia 106:202–2015

    Article  CAS  PubMed  Google Scholar 

  • Lewis GC, Raistrick N, Bakken AK, Macduff JH (1996) Effect of infection by the endophytic fungus Acremonium lolii on growth and nitrogen uptake by perennial ryegrass (Lolium perenne) in flowing solution culture. Ann Appl Biol 129:451–460

    Article  Google Scholar 

  • Li X, Ren A, Han R, Yin L, Wei M, Gao Y (2012) Endophyte-mediated effects on the growth and physiology of Achnatherum sibiricum are conditional on both N and P availability. PLoS One 7:e48010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Q, Parsons AJ, Xue H, Fraser K, Ryan GD, Newman JA, Rasmussen S (2011) Competition between foliar Neotyphodium lolii endophytes and mycorrhizal Glomus spp. fungi in Lolium perenne depends on resource supply and host carbohydrate content. Funct Ecol 25:910–920

    Article  Google Scholar 

  • Lyons PC, Evans JJ, Bacon CW (1990) Effects of the Fungal endophyte Acremonium coenophialum on nitrogen accumulation and metabolism in tall fescue. Plant Physiol 92:726–732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malinowski D, Belesky D (1999) Tall fescue aluminum tolerance is affected by Neotyphodium coenophialum endophyte. J Plant Nutr 22:1335–1349

    Article  Google Scholar 

  • Malinowski DP, Belesky DP (2000) Adaptations of endophyte-infected cool-season grasses to environmental stresses: mechanisms of drought and mineral stress tolerance. Crop Sci 40:923–940

    Article  CAS  Google Scholar 

  • Malinowski DP, Alloush GA, Belesky DP (1998) Evidence for chemical changes on the root surface of tall fescue in response to infection with the fungal endophyte Neotyphodium coenophialum. Plant Soil 205:1–12

    Article  CAS  Google Scholar 

  • Malinowski DP, Alloush GA, Belesky DP (2000) Leaf endophyte Neotyphodium coenophialum modifies mineral uptake in tall fescue. Plant Soil 227:115–126

    Article  CAS  Google Scholar 

  • Malinowski DP, Zuo H, Belesky DP, Alloush GA (2004) Evidence for copper binding by extracellular root exudates of tall fescue but not perennial ryegrass infected with Neotyphodium spp. endophytes. Plant Soil 267:1–12

    Article  CAS  Google Scholar 

  • McNeilly T, Roose ML (1984) The distribution of perennial ryegrass genotypes in swards. New Phytol 98:503–551

    Article  Google Scholar 

  • Meier CL, Bowman WD (2008) Links between plant litter chemistry, species diversity, and below-ground ecosystem function. PNAS 105:19780–19785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monnet F, Vaillant N, Hitmi A, Sallanon H (2005) Photosynthetic activity of Lolium perenne as a function of endophyte status and zinc nutrition. Funct Plant Biol 32:131–139

    Article  CAS  Google Scholar 

  • Moon CD (1999) Genetic identification and evolution of Ephichloë endophytes. Dissertation. Massey University, Palmerston North, New Zealand

  • Müller J (2003) Artificial infection by endophytes affects growth and mycorrhizal colonisation of Lolium perenne. Funct Plant Biol 30:419–424

    Article  Google Scholar 

  • Nelson CJ, Moser LE (1994) Plant factors affecting forage quality. In: Fahey GC Jr, Collins M, Mertens DR, Moser LE (eds) Forage quality, evaluation, and utilization. American Society of Agronomy, Inc, Madison, pp 115–154

    Google Scholar 

  • Novas MV, Cabral D, Godeas AM (2005) Interaction between grass endophytes and mycorrhizas in Bromus setifolius from Patagonia, Argentina. Symbiosis 40:23–30

    Google Scholar 

  • Novas MV, Iannone LJ, Godeas AM, Scervino JM (2012) Evidence for leaf endophyte regulation of root symbionts: effect of Neotyphodium endophytes on the pre-infective state of mycorrhizal fungi. Symbiosis 55:19–28

    Article  Google Scholar 

  • Oliveira JA, González E, Castro P, Costal L (2004) Effects of endophyte infection on dry matter yield, persistence and nutritive value of perennial ryegrass in Galicia (north-west Spain). Span J Agric Res 2:558–563

    Article  Google Scholar 

  • Omacini M, Chaneton EJ, Ghersa CM, Otero P (2004) Do foliar endophytes affect grass litter decomposition? A microcosm approach using Lolium multiflorum. Oikos 104:581–590

    Article  Google Scholar 

  • Omacini M, Eggers T, Bonkowski M, Gange AC, Jones TH (2006) Leaf endophytes affect mycorrhizal status and growth of co-infected and neighbouring plants. Funct Ecol 20:226–232

    Article  Google Scholar 

  • Omacini M, Semmartin M, Pérez LI, Gundel PE (2012) Grass-endophyte symbiosis: a neglected aboveground interaction with multiple belowground consequences. Appl Soil Ecol 61:273–279

    Article  Google Scholar 

  • Peeters A (2004) Wild and sown grasses: profiles of a temperate species selection, ecology, biodiversity and use. Food and Agriculture Organization (FAO), Rome

    Google Scholar 

  • Ponce MA, Bompadre MJ, Scervino JM, Ocampo JA, Chaneton EJ, Godeas AM (2009) Flavonoids, benzoic acids and cinnamic acids isolated from shoots and roots of Italian rye grass (Lolium multiflorum Lam.) with and without endophyte association and arbuscular mycorrhizal fungus. Biochem Syst Ecol 37:245–253

    Article  CAS  Google Scholar 

  • Rahman MH, Saiga S (2005) Endophytic fungi (Neotyphodium coenophialum) affect the growth and mineral uptake, transport and efficiency ratios in tall fescue (Festuca arundinacea). Plant Soil 272:163–171

    Article  CAS  Google Scholar 

  • Rasmussen S, Parsons AJ, Fraser K, Xue H, Newman JA (2008) Metabolic profiles of Lolium perenne are differentially affected by nitrogen supply, carbohydrate content, and fungal endophyte infection. Plant Physiol 146:1440–1453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rasmussen S, Liu Q, Parsons AJ, Xue H, Sinclair B, Newman JA (2012) Grass-endophyte interactions: a note on the role of monosaccharide transport in the Neotyphodium lolii-Lolium perenne symbiosis. New Phytol 196:7–12

    Article  CAS  PubMed  Google Scholar 

  • Ravel C, Courty C, Coudret A, Charmet G (1997) Beneficial effects of Neotyphodium lolii on the growth and water status in perennial ryegrass. Agronomie 17:173–181

    Article  Google Scholar 

  • Ren AZ, Gao YB, Zhang L, Xie F (2006) Effects of cadmium on growth parameters of endophyte-infected endophyte-free ryegrass. J Plant Nutr Soil Sci 169:857–860

    Article  CAS  Google Scholar 

  • Ren AZ, Gao YB, Zhou F (2007) Response of Neotyphodium lolii-infected perennial ryegrass to phosphorus deficiency. Plant Soil Environ 53:113–119

    CAS  Google Scholar 

  • Ren AZ, Gao YB, Wang W, Wang JL, Zhao NX (2009) Influence of nitrogen fertilizer and endophyte infection on ecophysiological parameters and mineral element content of perennial ryegrass. J Integr Plant Biol 51:75–83

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez RJ, White JF, Arnold AE, Redman RS (2009) Fungal endophytes: diversity and functional roles. New Phytol 182:314–330

    Article  CAS  PubMed  Google Scholar 

  • Rozpądek P, Wężowicz K, Nosek M, Ważny R, Tokarz K, Lembicz M, Miszalski Z, Turnau K (2015) The fungal endophyte Epichloë typhina improves photosynthesis efficiency of its host orchard grass (Dactylis glomerata). Planta. doi:10.1007/s00425-015-2337-x

    PubMed  PubMed Central  Google Scholar 

  • Saikkonen K, Lehtonen P, Helander M, Koricheva J, Faeth SH (2006) Model systems in ecology: dissecting the endophyte-grass literature. Trends Plant Sci 11:428–433

    Article  CAS  PubMed  Google Scholar 

  • Saikkonen K, Gundel PE, Helander M (2013) Chemical ecology mediated by fungal endophytes in grasses. J Chem Ecol 39:962–968

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Marquez SS, Bills GF, Acuña LD, Zabalgogeazcoa I (2010) Endophytic mycobiota of leaves and roots of the grass Holcus lanatus. Fungal Divers 41:115–123

    Article  Google Scholar 

  • Soto-Barajas MC, Gomez J, Vázquez de Aldana BR, Zabalgogeazcoa I (2013) Incidence and identification of Epichloë/Neotyphodium endophytes in wild population of Lolium perenne. In: Schneider C, Leifert C, Felmann F (eds) Endopytes for plant protection: the state of the art. Proceeding of the 5th International on Plant protection and Plant Health in Europe. Berlin, pp 33–38

  • Sutherland BL, Hume DE, Tapper BA (1999) Allelopathic effects of endophyte-infected perennial ryegrass extracts on white clover seedlings. N Z J Agric Res 42:19–26

    Article  Google Scholar 

  • Tadych M, Bergen MS, White JF (2014) Epichloe spp. associated with grasses: new insights on life cycles, dissemination and evolution. Mycologia 106:181–201

    Article  PubMed  Google Scholar 

  • Vázquez-de-Aldana BR, Romo M, García-Ciudad A, Petisco C, García-Criado B (2011) Infection with the fungal endophyte Epichloë festucae may alter the allelopathic potential of red fescue. Ann Appl Biol 159:281–290

    Article  Google Scholar 

  • Vázquez-de-Aldana BR, Garcia-Ciudad A, Garcia-Criado B, Vicente-Tavera S, Zabalgogeazcoa I (2013) Fungal endophyte (Epichloe festucae) alters the nutrient content of Festuca rubra regardless of water availability. PLoS One 8:e84539

    Article  PubMed  PubMed Central  Google Scholar 

  • Vázquez-de-Aldana BR, Zabalgogeazcoa I, García-Ciudad A, García-Criado B (2013) An Epichloë endophyte affects the competitive ability of Festuca rubra against other grassland species. Plant Soil 362:201–213

    Article  Google Scholar 

  • Vignale MV, Iannone LJ, Pinget AD, de Battista JP, Novas MV (2015) Effect of epichloid endophytes and soil fertilization on arbuscular mycorrhizal colonization of a wild grass. Plant Soil. doi:10.1007/s11104-015-2522-5

    Google Scholar 

  • White JF, Bacon CW, Hinton DM (1997) Modifications of host cells and tissues by the biotrophic endophyte Epichloe amarillans (Clavicipitaceae; Ascomycotina). Can J Bot 75:1061–1069

    Article  Google Scholar 

  • Zabalgogeazcoa I, Garcia Ciudad A, Vázquez-de-Aldana BR, Garcia Criado B (2006) Effects of the infection by the fungal endophyte Epichloë festucae in the growth and nutrient content of Festuca rubra. Eur J Agron 24:374–384

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was financed with project AGL2011-22783 granted by the Spanish Ministry of Economy and Competitiveness. MC Soto-Barajas was supported by a CONACyT (Mexican Council of Sciences and Technology) doctoral fellowship. Thanks are due to Amador Alvarez for technical assistance with field experiment. Useful comments by two anonymous reviewers helped to improve a previous version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beatriz R. Vázquez-de-Aldana.

Additional information

Responsible Editor: Kari Saikkonen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soto-Barajas, M.C., Zabalgogeazcoa, I., Gómez-Fuertes, J. et al. Epichloë endophytes affect the nutrient and fiber content of Lolium perenne regardless of plant genotype. Plant Soil 405, 265–277 (2016). https://doi.org/10.1007/s11104-015-2617-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-015-2617-z

Keywords

Navigation