Skip to main content

Advertisement

Log in

Biomass and soil carbon stocks of indigenous agroforestry systems on the south-eastern Rift Valley escarpment, Ethiopia

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and Aims

Biomass carbon (C) and soil organic carbon (SOC) stocks in three indigenous agroforestry (AF) systems (Enset [Ensete ventricosum, Musaceae], Enset-Coffee and Fruit-Coffee) practiced on the Rift Valley escarpment of Ethiopia are presented and evaluated. These unique AF systems are characterised by a high proportion and diversity of trees.

Methods

Data were collected from six smallholdings per AF system. Above- and belowground biomass of trees (fruit and non-fruit), enset and coffee plants were calculated using allometric equations while the biomasses of herbs, litter and fine roots (<2 cm) were determined by destructive sampling techniques. SOC stocks (0–30 and 30–60 cm) were calculated from measured C contents and bulk density values.

Results

Smallholding total biomass C stocks averaged 67 Mg ha−1 with trees accounting for 39–93 %. Herbs accounted for <4 % of aboveground biomass. Coffee accounted for 11 % and enset 9 % of total biomass C on average. SOC stocks (0–60 cm) were 109–253 Mg ha−1 (52–91 % of total C stocks) and uncorrelated to biomass C stocks. Biomass C or SOC stocks did not significantly differ between AF systems but biomass C stocks were significantly correlated to elevation.

Conclusions

The C stocks of the three studied AF systems were found to be amongst the highest reported for tropical forests and agroforestry systems. These unique AF systems are therefore well suited to REDD+ projects. However, the C stocks were more determined by individual smallholder management practice than by AF system or climate (elevation).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Albrecht A, Kandji ST (2003) Carbon sequestration in tropical agroforestry systems. Agric Ecosyst Environ 99:15–27. doi: 10.1016/S0167-8809(03)00138-5

  • Asfaw Z, Ågren GI (2007) Farmers’ local knowledge and topsoil properties of agroforestry practices in Sidama, southern Ethiopia. Agroforest Syst 71:35–48. doi:10.1007/s10457-007-9087-0

    Article  Google Scholar 

  • Asfaw Z, Nigatu A (1995) Homegardens in Ethiopia: Characteristics and plant diversity. Ethiop J Sci 18(2):235–266

    Google Scholar 

  • Asfaw Z, Woldu Z (1997) Crop associations of homegarden in Welayta and Gurage in southern Ethiopia. Ethiop J Sci 20(1):73–90

    Google Scholar 

  • Batjes NH (1996) Total carbon and nitrogen in the soils of the world. Eur J Soil Sci 47:151–163. doi:10.1111/j.1365-2389.1996.tb01386.x

  • Bishaw B, Neufeldt H, Mowo J, Abdelkadir A, Muriuki J, Dalle G, Assefa T, Guillozet K, Kassa H, Dawson IK, Luedeling E, Mbow C (2013) Farmers’ strategies for adapting to and mitigating climate variability and change through agroforestry in Ethiopia and Kenya. Davis CM, Bernart B, Dmitriev A (eds). Forestry Communications Group, Oregon State University, Corvallis, Oregon.

  • Brakas SG, Aune JB (2011) Biomass and Carbon Accumulation in Land Use Systems of Claveria, the Philippines. In: Kumar BM, Nair PKR (eds) Carbon sequestration potential of agroforestry systems: Opportunities and challenges, vol 8, Advances in Agroforestry. Springer, Dordrecht Heidelberg, London, New York, pp 163–175

  • Brandt AS, Spring A, Hiebsch C, McCabe JT, Tabogie E, Diro M, Wolde-Michael G, Yntiso G, Shigeta M, Tesfaye S (1997) The “Tree Against Hunger” Enset-Based Agricultural Systems in Ethiopia. American Association for the Advancement of Science, Washington, p 56

    Google Scholar 

  • Brown S, Grais A, Ambagis S, Pearson T (2012) Baseline GHG emissions from the agricultural sector and mitigation potential in countries of East and West Africa. CCAFS Working paper no. 13. CGIAR research program on climate change, agriculture and food security (CCAFS). Copenhagen, Denmark. Available online at: www.ccafs.cgiar.org.

  • Brown S, Lugo AE (1982) The storage and production of organic matter in tropical forest and their role in the global carbon cycle. Biotropica 14(3):161–187

    Article  Google Scholar 

  • de Jong BHJ, Tipper R, Taylor J (1997) A framework for monitoring and evaluating carbon mitigation by farm forestry projects: Example of a demonstration project in Chiapas, Mexico. Mitig Adapt Strat Glob Change 2:231–246

    Article  Google Scholar 

  • Demessie A, Singh BR, Lal R (2013) Soil carbon and nitrogen stocks under chronosequence of farm and traditional agroforestry land uses in Gambo District, Southern Ethiopia. Nutr Cycl Agroecosyst 95:365–375. doi:10.1007/s10705-013-9570-0

    Article  CAS  Google Scholar 

  • Dixon RK (1995) Agroforestry systems: Sources or sinks of greenhouse gases? Agroforest Syst 31:99–116

    Article  Google Scholar 

  • Dixon RK, Brown S, Houghton RA, Solomon AM, Trexler MC, Wisniewski J (1994) Carbon pools and flux of global forest ecosystems. Science 263:185–190

    Article  CAS  PubMed  Google Scholar 

  • Dossa EL, Fernandes ECM, Reid WS, Ezui K (2008) Above- and belowground biomass, nutrient and carbon stocks contrasting an open-grown and a shade coffee plantation. Agroforest Syst 72:103–115. doi:10.1007/s10457-007-9075-4

    Article  Google Scholar 

  • Duguma B, Gockowski J, Bakala J (2001) Smallholder cacao (Theobroma cacao Linn.) cultivation in agroforestry systems of west and central Africa: Challenges and opportunities. Agroforest Syst 51:177–188

    Article  Google Scholar 

  • Edmond N, Yakam-Simen F, Tadesse KK, Romeij P (2000) Gedeo zone mapping project. Phase 2. Final Report. Treemail, Heelsum, The Netherlands, Privateers N.V. and the Agricultural Bureau for Gedeo Zone. http://www.treemail.nl/download. Cited 20 Nov 2013

  • FAO (2001) Lecture notes on the major soils of the world. Driessen P, Deckers J, Spaargaren O, Nachtergaele F (eds) World Soil Resources Report No. 94. Rome

  • Getahun A (1974) The role of wild plants in the native diet of Ethiopians. Agroecosystems 1:45–56

    Google Scholar 

  • Häger A (2012) The effects of management and plant diversity on carbon storage in coffee agroforestry systems in Costa Rica. Agroforest Syst 86:159–174. doi:10.1007/s10457-012-9545-1

    Article  Google Scholar 

  • Henry M, Tittonell P, Manlay RJ, Bernoux M, Albrecht A, Vanlauwe B (2009) Biodiversity, carbon stocks and sequestration potential in aboveground biomass in smallholder farming systems of western Kenya. Agric Ecosyst Environ 129:238–252. doi:10.1016/j.agee.2008.09.006

    Article  CAS  Google Scholar 

  • IBM Corp. Released 2012. IBM SPSS Statistics for Windows, Version 21.0. Armonk, NY, IBM Corp.

  • IPCC (2007) Climate change 2007: impacts, adaptation and vulnerability. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK, p 976

  • Jose S, Bardhan S (2012) Agroforestry for biomass production and carbon sequestration: An overview. Agroforest Syst 86:105–111. doi:10.1007/s10457-012-9573-x

    Article  Google Scholar 

  • Kanshie TK (2002) Five thousand years of sustainability? A case study on Gedeo land use (southern Ethiopia). Wageningen Agricultural University Wageningen, Dissertation

    Google Scholar 

  • Kirby KR, Potvin C (2007) Variation in carbon storage among tree species: Implications for the management of a small-scale carbon sink project. For Ecol Manag 246(2–3):208–221. doi:10.1016/j.foreco.2007.03.072

    Article  Google Scholar 

  • Kozlowski TT, Pallardy SG (1996) Physiology of woody plants, 2nd edn. Academic, San Diego, p 411

    Google Scholar 

  • Kuyah S, Dietz J, Muthuri C, Jamnadass R, Mwangi P, Coe R, Neufeldt H (2012a) Allometric equations for estimating biomass in agricultural landscapes: I. Aboveground biomass. Agric Ecosyst Environ 158:216–224. doi:10.1016/j.agee.2012.05.011

    Article  Google Scholar 

  • Kuyah S, Dietz J, Muthuri C, Jamnadass R, Mwangi P, Coe R, Neufeldt H (2012b) Allometric equations for estimating biomass in agricultural landscapes: II. Belowground biomass. Agric Ecosyst Environ 158:225–234. doi:10.1016/j.agee.2012.05.010

    Article  Google Scholar 

  • Lal R (2004) Soil carbon sequestration to mitigate climate change. Geoderma 123:1–22. doi:10.1016/j.geoderma.2004.01.032

  • Lemenih M, Fisseha I (2004) Soil carbon stocks and turnovers in various vegetation types and arable lands along an elevation gradient in southern Ethiopia. Geoderma 123:177–188. doi:10.1016/j.geoderma.2004.02.004

    Article  CAS  Google Scholar 

  • Losi JC, Siccama GT, Condit R, Morales EJ (2003) Analysis of alternative methods for estimating carbon stock in young tropical plantations. For Ecol Manag 184:355–368. doi:10.1016/S0378-1127(03)00160-9

    Article  Google Scholar 

  • Mebrate BT (2007) Agroforestry practices in Gedeo Zone, Ethiopia. A geographical analysis. PhD Dissertation, Panjab University, Chandigarh, p 188

  • Montagnini F, Nair PKR (2004) Carbon sequestration: An underexploited environmental benefit of agroforestry systems. Agroforest Syst 61:281–295

    Google Scholar 

  • Mutuo PK, Cadisch G, Albrecht A, Palm CA, Verchot L (2005) Potential of agroforestry for carbon sequestration and mitigation of greenhouse gas emissions from soils in the tropics. Nutr Cycl Agroecosyst 71:43–54. doi:10.1007/s10705-004-5285-6

    Article  CAS  Google Scholar 

  • Nair PKR (1985) Classification of agroforestry systems. Agroforest Syst 3(2):97–128

    Article  Google Scholar 

  • Nair PKR (1993) An Introduction to Agroforestry. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  • Nair PKR (2012) Carbon sequestration studies in agroforestry systems: a reality-check. Agroforest Syst 86:243–253. doi:10.1007/s10457-011-9434-z

    Article  Google Scholar 

  • Nair PKR, Kumar BM, Nair VD (2009) Agroforestry as a strategy for carbon sequestration. J Plant Nutr Soil Sci 172:10–23. doi:10.1002/jpln.200800030

    Article  CAS  Google Scholar 

  • Negash M (2007) Trees management and livelihoods in Gedeo’s agroforests, Ethiopia. For, Trees Livelihoods 17(2):157–168. doi:10.1080/14728028.2007.9752591

  • Negash M (2013) The indigenous agroforestry systems of the south-eastern Rift Valley escarpment, Ethiopia: Their biodiversity, carbon stocks, and litterfall. Doctoral thesis (University of Helsinki, Faculty of agriculture and Forestry, Department of Forest Sciences, Viikki Tropical Resources Institute). Tropical Forestry Reports 44. ISBN 978-952-10-9415-6

  • Negash M, Achalu N (2008) History of indigenous agroforestry in Gedeo, southern Ethiopia, based on local community interviews: vegetation diversity and structure in the land use systems. Ethiop J Nat Resour 10(1):31–52

    Google Scholar 

  • Negash M, Starr M (2013) Litterfall production and associated carbon and nitrogen fluxes of seven woody species grown in indigenous agroforestry systems in the south-eastern Rift Valley escarpment of Ethiopia. Nutr Cycl Agroecosyst 97:29–41. doi:10.1007/s10705-013-9590-9

    Article  CAS  Google Scholar 

  • Negash M, Starr M, Kanninen M (2013a) Allometric equations for biomass estimation of Enset (Ensete ventricosum) grown in indigenous agroforestry systems in the Rift Valley escarpment of southern-eastern Ethiopia. Agroforest Syst 87:571–581. doi:10.1007/s10457-012-9577-6

    Article  Google Scholar 

  • Negash M, Starr M, Kanninen M, Berhe L (2013b) Allometric equations for estimating aboveground biomass of Coffea arabica L. grown in the Rift Valley escarpment of Ethiopia. Agroforest Syst 87:953–966. doi 10.1007/s10457-011-9408-1

  • Negash M, Yirdaw E, Luukkanen O (2012) Potential of indigenous multistrata agroforests for maintaining native floristic diversity in the south-eastern Rift Valley escarpment, Ethiopia. Agroforest Syst 85:9–28. doi:10.1007/s10457-011-9408-1

    Article  Google Scholar 

  • Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P, Jackson RB, Pacala S, McGuire AD, Piao S, Rautiainen A, Sitch S, Hayes D (2011) A large and persistent carbon sink in the world’s forests. Science 333:988–993. doi:10.1126/science.1201609

    Article  CAS  PubMed  Google Scholar 

  • Pandey DN (2002) Carbon sequestration in agroforestry systems. Clim Pol 2:367–377

    Article  Google Scholar 

  • Post WM, Emanuel WR, Zinke PJ, Stangenberger AG (1982) Soil carbon pools and world life zones. Nature 298:156–159

    Article  CAS  Google Scholar 

  • Rosell RA, Gasparoni JC, Galantini JA (2000) Soil organic matter evaluation. In: Lal R, Kimble JM, Follett RF, Stewart BA (eds) Assessment methods for soil carbon. CRC/Lewis Publishers, Boca Raton, pp 311–322

  • Roshetko JM, Lasco RD, Delos Angeles MS (2007) Smallholder agroforestry systems for carbon storage. Mitig Adapt Strat Glob Change 12:219–242. doi:10.1007/s11027-005-9010-9

    Article  Google Scholar 

  • Schmitt-Harsh M, Evans TP, Castellanos E, Randolph JC (2012) Carbon stocks in coffee agroforests and mixed dry tropical forests in the western highlands of Guatemala. Agroforest Syst 86:141–157. doi:10.1007/s10457-012-9549-x

    Article  Google Scholar 

  • Schoeneberger MM (2009) Agroforestry: working trees for sequestering carbon on agricultural lands. Agroforest Syst 75:27–37. doi:10.1007/s10457-008-9123-8

    Article  Google Scholar 

  • Schroeder P (1994) Carbon storage benefits of agroforestry systems. Agroforest Syst 27:89–97

    Article  Google Scholar 

  • Silva LCR, Hoffmann WA, Rossatto DR, Haridasan M, Franco AC, Horwath WR (2013) Can savannas become forests? A coupled analysis of nutrient stocks and fire thresholds in central Brazil. Plant Soil 373:829–842. doi:10.1007/s11104-013-1822-x

    Article  CAS  Google Scholar 

  • Smith P, Martino D, Cai Z, Gwary D, Janzen H, Kumar P, McCarl B, Ogle S, O’Mara F, Rice C, Scholes B, Sirotenko O (2007) Agriculture. In Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Metz B, Davidson OR, Bosch PR, Dave R, Meyer LA (eds). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

  • Snowdon P, Raison J, Keith H, Ritson P, Grierson P, Adams M, Montagu K, Bi H-Q, Burrows W, Eamus D (2002) Protocol for sampling tree and stand biomass. National Carbon Accounting System, Technical Report No. 31. Canberra, Australian Greenhouse Office. p. 66

  • Soto-Pinto L, Anzueto M, Mendoza J, Ferrer GJ, de Jong B (2010) Carbon sequestration through agroforestry in indigenous communities of Chiapas, Mexico. Agroforest Syst 78:39–51. doi:10.1007/s10457-009-9247-5

    Article  Google Scholar 

  • Swamy SL, Puri S (2005) Biomass production and C-sequestration of Gmelina arborea in plantation and agroforestry system in India. Agroforest Syst 64:181–195. doi:10.1007/s10457-004-1999-3

    Article  Google Scholar 

  • Tekelay T, Malmer A (2004) Decomposition of leaves from two indigenous trees of contrasting qualities under shaded-coffee and agricultural land-uses during the dry season at Wondo Genet, Ethiopia. Soil Biol Biochem 36:777–786. doi:10.1016/j.soilbio.2003.12.013

    Article  Google Scholar 

  • Thangataa PH, Hildebrand PE (2012) Carbon stock and sequestration potential of agroforestry systems in smallholder agroecosystems of sub-Saharan Africa: Mechanisms for ‘reducing emissions from deforestation and forest degradation’ (REDD+). Agric Ecosyst Environ 158:172–183. doi:10.1016/j.agee.2012.06.007

    Article  Google Scholar 

  • Torquebiau EF (2000) A renewed perspective on agroforestry concepts and classification. Life Sci 323:1009–1017

    CAS  Google Scholar 

  • Unruh JD, Houghton RA, Lefebvre PA (1993) Carbon storage in agroforestry: An estimate for sub-Saharan Africa. Climate Res 3:39–52

    Article  Google Scholar 

  • Upadhyay TP, Sankhayan PL, Solberg S (2005) A review of carbon sequestration dynamics in the Himalayan region as a function of land use change and forest/soil degradation with special reference to Nepal. Agric Ecosyst Environ 105:449–465. doi:10.1016/j.agee.2004.09.007

    Article  CAS  Google Scholar 

  • van Noordwijk M, Rahayu S, Hairiah K, Wulan YC, Farida A, Verbist B (2002) Carbon stock assessment for a forest-to-coffee conversion landscape in Sumber-Jaya (Lampung, Indonesia): From allometric equations to land use change analysis. Science in China C 45:75–86, http://www.globalcarbonproject.org. Cited 5 Nov 2012

    Google Scholar 

  • Verchot LV, Noordwijk MV, Kandji S, Tomich T, Ong C, Albrecht A, Mackensen J, Bantilan C, Anupama KV, Palm C (2007) Climate change: linking adaptation and mitigation through agroforestry. Mitig Adapt Strat Glob Change 12:901–918. doi:10.1007/s11027-007-9105-6

    Article  Google Scholar 

  • Young A (1997) Agroforestry for soil management. 2nd edition. CAB International, Wallingford, UK (in association with ICRAF, Nairobi, Kenya)

  • Zomer RJ, Trabucco A, Coe R, Place F (2009) Trees on farm: analysis of global extent and geographical patterns of agroforestry. ICRAF Working Paper No. 89. Nairobi, Kenya: World Agroforestry Centre

Download references

Acknowledgments

We acknowledge financial support for the first author from International Foundation for Science (IFS Grt. No. D/4836-2), the Finnish Cultural Foundation, and the Finnish Society of Forest Science. We are grateful to Dr. Eshetu Yirdaw for valuable comments on the planning stage of this study. The Viikki Tropical Resource Institute, Department of Forest Sciences, University of Helsinki and the Wondo Genet College of Forestry and Natural Resources, Hawassa University, Ethiopia are also acknowledged for offering a postgraduate study opportunity for the first author. We are also indebted to Gedeo farmers for allowing us to visit and carry out this study on their farms and for providing marvellous experiences. Finally, we wish to thank the three anonymous reviewers whose comments and suggestions improved this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mike Starr.

Additional information

Responsible Editor: Kees Jan van Groenigen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 27 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Negash, M., Starr, M. Biomass and soil carbon stocks of indigenous agroforestry systems on the south-eastern Rift Valley escarpment, Ethiopia. Plant Soil 393, 95–107 (2015). https://doi.org/10.1007/s11104-015-2469-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-015-2469-6

Keywords

Navigation