Skip to main content
Log in

Effects of magnesium deficiency on magnesium uptake activity of rice root, evaluated using 28 Mg as a tracer

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

The mechanisms underlying magnesium (Mg) uptake by plant roots remain to be fully elucidated. In particular, there is little information about the effects of Mg deficiency on Mg uptake activity. A Mg uptake kinetic study is essential for better understanding the Mg uptake system.

Methods

We performed a Mg uptake tracer experiment in rice plants using 28 Mg.

Results

Mg uptake was mediated by high- and low-affinity transport systems. The K m value of the high-affinity transport system was approximately 70 μM under Mg-deficient conditions. The Mg uptake activity was promoted by Mg deficiency, which in turn fell to the basal level after 5- min of Mg resupply. The induced uptake rate was inhibited by ionophore treatment, suggesting that an energy-dependent uptake system is enhanced by Mg deficiency.

Conclusions

The Mg uptake changes rapidly with Mg conditions in rice, as revealed by a 28 Mg tracer experiment. This technique is expected to be applicable for Mg uptake analyses, particularly in mutants or other lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bose J, Babourina O, Shabala S, Rengel Z (2013) Low-pH and aluminum resistance in Arabidopsis correlates with high cytosolic magnesium content and increased magnesium uptake by plant roots. Plant Cell Physiol 54:1093–1104

    Article  PubMed  CAS  Google Scholar 

  • Cakmak I, Kirkby EA (2008) Role of magnesium in carbon partitioning and alleviating photooxidative damage. Physiol Plant 133:692–704

    Article  PubMed  CAS  Google Scholar 

  • Chen ZC, Yamaji N, Motoyama R, Nagamura Y, Ma JF (2012) Up-regulation of a magnesium transporter gene OsMGT1 is required for conferring aluminum tolerance in rice. Plant Physiol 159:1624–1633

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Connolly E, Guerinot ML (2002) Iron stress in plants. Genome Biol 3:reviews 1024.1–1024.4

    Article  Google Scholar 

  • Dann CE, Wakeman CA, Sieling CL, Baker SC, Irnov I, Winkler WC (2007) Structure and mechanism of a metal-sensing regulatory RNA. Cell 130:878–892

    Article  PubMed  CAS  Google Scholar 

  • Gansel X, Muños S, Tillard P, Gojon A (2001) Differential regulation of the NO3 - and NH4 + transporter genes AtNrt2.1 and AtAmt1.1 in Arabidopsis: relation with long-distance and local controls by N status of the plant. Plant J 26:143–155

    Article  PubMed  CAS  Google Scholar 

  • Gebert M, Meschenmoser K, Svidova S, Weghuber J, Schweyen R, Eifler K, Lenz H, Weyand K, Knoop V (2009) A root-expressed magnesium transporter of the MRS2/MGT gene family in Arabidopsis thaliana allows for frowth in low-Mg2+ environments. Plant Cell 21:4018–4030

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gierth M, Mäser P, Schroeder JI (2005) The potassium transporter AtHAK5 functions in K+ deprivation-induced high-affinity K+ uptake and AKT1 K+ channel contribution to K+ uptake kinetics in Arabidopsis roots. Plant Physiol 137:1105–1114

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hattori M, Tanaka Y, Fukai S, Ishitani R, Nureki O (2007) Crystal structure of the MgtE Mg2+ transporter. Nature 448:1072–1075

    Article  PubMed  CAS  Google Scholar 

  • Hawkesford M, Horst W, Kichey T, Lambers H, Schjoerring J, Skrumsager Møller I, White P (2012) Functions of Macronutrients. In: Marschner’s Mineral Nutrition of Higher Plants, Third Edition, pp. 135-189. Marschner P, ed. Academic Press, London. ISBN 978-0-12-384905-2

  • Hermans C, Verbruggen N (2005) Physiological characterization of Mg deficiency in Arabidopsis thaliana. J Exp Bot 56:2153–2161

    Article  PubMed  CAS  Google Scholar 

  • Hermans C, Johnson GN, Strasser RJ, Verbruggen N (2004) Physiological characterisation of magnesium deficiency in sugar beet: acclimation to low magnesium differentially affects photosystems I and II. Planta 220:344–355

    Article  PubMed  CAS  Google Scholar 

  • Hermans C, Vuylsteke M, Coppens F, Craciun A, Inze D, Verbruggen N (2010a) Early transcriptomic changes induced by magnesium deficiency in Arabidopsis thaliana reveal the alteration of circadian clock gene expression in roots and the triggering of abscisic acid-responsive genes. New Phytol 187:119–131

    Article  PubMed  CAS  Google Scholar 

  • Hermans C, Vuylsteke M, Coppens F, Cristescu SM, Harren FJ, Inze D, Verbruggen N (2010b) Systems analysis of the responses to long-term magnesium deficiency and restoration in Arabidopsis thaliana. New Phytol 187:132–144

    Article  PubMed  CAS  Google Scholar 

  • Hmiel SP, Snavely MD, Miller CG, Maguire ME (1986) Magnesium transport in Salmonella Typhimurium: Characterization of magnesium influx and cloning of a transport gene. J Bacteriol 168:1444–1450

    PubMed  CAS  PubMed Central  Google Scholar 

  • Iwata R, Kawamura M, Ido T, Kimura S (1992) Chromatographic purification of no-carrier-added magnesium-28 for biological studies. J Radioanal Nucl Chem 159:233–237

    Article  CAS  Google Scholar 

  • Joseph RA, Hai T (1976) Kinetics of potassium and magnesium uptake by intact soybean roots. Physiol Plant 36:233–235

    Article  CAS  Google Scholar 

  • Kobayashi NI, Takayuki S, Iwata N, Ohmae Y, Ren I, Keitaro T, Tomoko MN (2013) Leaf senescence in rice due to magnesium deficiency mediated defect in transpiration rate before sugar accumulation and chlorosis. Physiol Plant 148:490–501

    Article  PubMed  CAS  Google Scholar 

  • Kucharski LM, Lubbe WJ, Maguire ME (2000) Cation hexaammines are selective and potent inhibitors of the CorA magnesium transport system. J Biol Chem 275:16767–16773

    Article  PubMed  CAS  Google Scholar 

  • Legett JE, Gilber WA (1969) Magnesium uptake by soybeans. Plant Physiol 44:1182–1186

    Article  Google Scholar 

  • Li L, Tutone AF, Drummond RSM, Gardner RC, Luan S (2001) A novel family of magnesium transport genes in Arabidopsis. Plant Cell 13:2761–2775

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Maas EV, Ogata G (1971) Absorption of magnesium and chloride by excised corn roots. Plant Physiol 47:357–360

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Maguire M, Cowan J (2002) Magnesium chemistry and biochemistry. Biometals 15:203–210

    Article  PubMed  CAS  Google Scholar 

  • Mao D, Chen J, Tian L, Liu Z, Yang L, Tang R, Li J, Lu C, Yang Y, Shi J, Chen L, Li D, Luan S (2014) Arabidopsis transporter MGT6 mediates magnesium uptake and is required for growth under magnesium limitation. Plant Cell in press

  • Muchhal US, Pardo JM, Raghothama KG (1996) Phosphate transporters from the higher plant Arabidopsis thaliana. Proc Natl Acad Sci U S A 93:10519–10523

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Okamoto M, Vidmar J, Glass A (2003) Regulation of NRT1 and NRT2 gene families of Arabidopsis thaliana: Responses to nitrate provision. Plant Cell Physiol 44:304–317

    Article  PubMed  CAS  Google Scholar 

  • Rengel Z, Robinson DL (1989) Competitive Al3+ inhibition of net Mg2+ uptake by intact Lolium multiflorum roots. Plant Physiol 91:1407–1413

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Saito TN, Kobayashi I, Tanoi K, Iwata N, Suzuki H, Iwata R, Nakanishi TM (2013) Expression and functional analysis of the CorA-MRS2-ALR-type magnesium transporter family in rice. Plant Cell Physiol 54:1673–1683

    Article  PubMed  CAS  Google Scholar 

  • Shaul O (2002) Magnesium transport and function in plants: the tip of the iceberg. Biometals 15:309–323

    Article  PubMed  CAS  Google Scholar 

  • Shaul O, Hilgemann DW, de-Almeida-Engler J, Montagu MV, Inz D, Galili G (1999) Cloning and characterization of a novel Mg2+/H+ exchanger. EMBO J 18:3973–3980

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Snavely MD, Florer JB, Miller CG, Maguire ME (1989) Magnesium transport in Salmonella Typhimurium 28 Mg2+ transport by the CorA, MgtA, and MgtB systems. J Bacteriol 171:4761–4766

    PubMed  CAS  PubMed Central  Google Scholar 

  • Steucek GL, Koontz HV (1970) Phloem mobility of magnesium. Plant Physiol 46:50–52

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Takano J, Miwa K, Yuan L, von Wirén N, Fujiwara T (2005) Endocytosis and degradation of BOR1, a boron transporter of Arabidopsis thaliana, regulated by boron availability. Proc Natl Acad Sci U S A 102:12276–12281

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Takano J, Wada M, Ludewig U, Schaaf G, Wiren N, Fujiwara T (2006) The Arabidopsis major intrinsic protein NIP5;1 is essential for efficient boron uptake and plant development under boron limitation. Plant Cell 18:1498–1509

    Article  PubMed  PubMed Central  Google Scholar 

  • Tanoi K, Saito T, Iwata N, Kobayashi NI, Nakanishi TM (2011) The analysis of magnesium transport system from external solution to xylem in rice root. Soil Sci Plant Nutr 57:265–271

    Article  CAS  Google Scholar 

  • Tanoi K, Kobayashi NI, Saito T, Iwata N, Hirose A, Ohmae Y, Iwata R, Suzuki H, Nakanishi TM (2013) Application of 28 Mg to the kinetic study of Mg uptake by rice plants. J Radioanal Nucl Chem 296:749–751

    Article  CAS  Google Scholar 

  • White PJ, Veneklaas EJ (2012) Nature and nurture: the importance of seed phosphorus. Plant Soil 357:1–8

    Article  CAS  Google Scholar 

  • Yoshimoto N, Takahashi H, Smith FW, Yamaya T, Saito K (2002) Two distinct high-affinity sulfate transporters with different inducibilities mediate uptake of sulfate in Arabidopsis roots. Plant J 29:465–473

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Japan Society for the Promotion of Science [Grant-in-Aid for Young Scientists (B) Grant No. 24780056] to K.T. and by the Funding Program for Next Generation World-Leading Researchers (NEXT Program) [GS-007] to T.M.N.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keitaro Tanoi.

Additional information

Responsible Editor: Philip John White.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanoi, K., Kobayashi, N.I., Saito, T. et al. Effects of magnesium deficiency on magnesium uptake activity of rice root, evaluated using 28 Mg as a tracer. Plant Soil 384, 69–77 (2014). https://doi.org/10.1007/s11104-014-2197-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-014-2197-3

Keywords

Navigation