Skip to main content
Log in

Effect of selenium fertilization on the accumulation of cadmium and lead in rice plants

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and Aims

The accumulation of cadmium and lead in rice (Oryza sativa L.) grains is a potential threat to human health. In this study, the effect of selenium fertilization on the uptake and translocation of cadmium and lead in rice plants was investigated.

Methods

Rice plants were cultivated using cadmium and lead contaminated soils with selenium addition at three concentrations (0, 0.5 and 1 mg kg−1). At maturity, plants were harvested, and element concentrations in rice tissues were analyzed by using ICP-MS.

Results

Selenium application significantly increased selenium accumulation in rice grain, and markedly decreased cadmium and lead concentrations in rice tissues. In brown rice grains, selenium application reduced cadmium concentrations by 44.4 %, but had no significant effect on lead accumulation. Selenium application significantly decreased metal mobility in soils, at 0.5 mg kg−1 treatment, the translocation factor of cadmium and lead from soil to iron plaque decreased by 71 and 33 % respectively.

Conclusions

The mechanism of selenium mitigating of heavy metal accumulation in rice could be decreasing metal bioavailability in soil. Selenium fertilization could be an effective and feasible method to enrich selenium and reduce cadmium levels in brown rice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allan CB, Lacourciere GM, Stadtman TC (1999) Responsiveness of selenoproteins to dietary selenium. Annu Rev Nutr 19:1–16

    Article  PubMed  CAS  Google Scholar 

  • Badiello R, Feroci G, Fini A (1996) Interaction between trace elements: selenium and cadmium ions. J Trace Elem Med Biol 10:156–162

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharyya MH, Sacco-Gibson NA, Peterson DP (1992) Cadmium-induced bone loss: Increased susceptibility in female beagles after ovariectomy. IARC Sci Publ 118:279–286

    PubMed  CAS  Google Scholar 

  • Bolan NS, Adriano CC, Duraisamy P, Mani A, Arulmozhiselvan K (2003) Immobilization and phytoavailability of cadmium in variable charge soils. 1. Effect of phosphate addition. Plant Soil 250:83–94

    Article  CAS  Google Scholar 

  • Capdevila F, Nadal M, Schuhmacher M, Domingo JL (2003) Intake of lead and cadmium from edible vegetables cultivated in Tarragona Province. Spain Trace Elem Electrolytes 20:256–261

    Article  Google Scholar 

  • Caussy D, Gochfeld M, Gurzau E, Neagu C, Ruedel H (2003) Lessons from case studies of metals: investigation exposure, bioavailability, and risk. Ecotoxicol Environ Saf 56:45–51

    Article  PubMed  CAS  Google Scholar 

  • Clemens S, Aarts MG, Thomine S, Verbruggen N (2013) Plant science: the key to preventing slow cadmium poisoning. Trends Plant Sci 18:92–9

    Article  PubMed  CAS  Google Scholar 

  • Deng H, Ye ZH, Wong MH (2004) Accumulation of lead, zinc, copper and cadmium by 12 wetland plant species thriving in metal-contaminated sites in China. Environ Pollut 132:29–40

    Article  PubMed  CAS  Google Scholar 

  • Duan GL, Liu WJ, Chen XP, Hu Y, Zhu YG (2013) Association of arsenic with nutrient elements in rice plants. Metallomics 5:784–792

    Article  PubMed  CAS  Google Scholar 

  • EFSA (European Food Safety Authority). 2012. Cadmium dietary exposure in the European population. EFSA J. 10, 2551

  • FAO/WHO (Food and Agriculture Organization/World Health Organization). 2010. Evaluation of Certain Food Additives and Contaminants (Seventy-third Report of the Joint FAO/WHO Expert Committee on Food Additives). WHO Technical Report Series, No. 960 (http://whqlibdoc.who.int/trs/WHO_TRS_960_eng.pdf)

  • Fargasova A, Pastierova J, Svetkova K (2006) Effect of Se-metal pair combinations (Cd, Zn, Cu, Pb) on photosynthetic pigments production and metal accumulation in Sinapis alba L. seedlings. Plant Soil Environ 52:8–15

    CAS  Google Scholar 

  • Feng RW, Wei CY, Tu SX, Liu ZQ (2013) Interactive effects of selenium and antimony on the uptake of selenium, antimony and essential elements in paddy-rice. Plant Soil 365:375–386

    Article  CAS  Google Scholar 

  • Fordyce FM, Zhang GD, Green K, Liu XP (2000) Soil, grain and water chemistry in relation to human selenium-responsive diseases in Enshi District. China Appl Geochem 15:117–132

    Article  CAS  Google Scholar 

  • Francek MA (1992) Soil lead levels in a small town environment: a case study from Mt Pleasant. Michigan Environ Pollut 76:251–257

    Article  CAS  Google Scholar 

  • Gotsis O (1982) Combined effects of selenium/mercury and selenium/copper on the cell population of the Alga Dunaliella minuta. Mar Biol 71:217–222

    Article  Google Scholar 

  • Grant CA, Buckley WT, Bailey LD, Selles F (1998) Cadmium accumulation in crops. Can J Plant Sci 78:1–17

    Article  CAS  Google Scholar 

  • Hartikainen H, Xue TL, Piironen V (2000) Selenium as an anti-oxidant and prooxidant in ryegrass. Plant Soil 225:193–200

    Article  CAS  Google Scholar 

  • Hawkesford MJ, Zhao FJ (2007) Strategies for increasing the selenium content of wheat. J Cereal Sci 46:282–292

    Article  CAS  Google Scholar 

  • He PP, Lv XZ, Wang GY (2004) Effects of Se and Zn supplementation on the antagonism against Pb and Cd in vegetables. Environ Int 30:167–172

    Article  PubMed  CAS  Google Scholar 

  • IARC (1993), IARC Monographs on the evaluation of carcinogenic risks to humans, Vol.58 Beryllium, Cadmium, Mercury, and Exposures in the Glass Manufacturing Industry, Lyon. http://www.iarc.fr (2007)

  • Juberg DR, Kleiman CF, Kwon SC (1997) Position paper of the American council of science and health: lead and human health. Ecotoxicol Environ Saf 38:162–180

    Article  PubMed  CAS  Google Scholar 

  • Kuboi T, Noguchi A, Yazaki J (1986) Family-dependent cadmium accumulation characteristics in higher plants. Plant Soil 92:405–415

    Article  CAS  Google Scholar 

  • Kumar M, Bijo AJ, Baghel RS, Reddy CRK, Jha B (2012) Selenium and spermine alleviates cadmium induced toxicity in the red seaweed Gracilaria dura by regulating antioxidant system and DNA methylation. Plant Physiol Biochem 51:129–138

    Article  PubMed  CAS  Google Scholar 

  • Lin L, Zhou WH, Dai HX, Cao FB, Zhang GP, Wu FB (2012) Selenium reduces cadmium uptake and mitigates cadmium toxicity in rice. J Hazard Mater 235–236:343–351

    Article  PubMed  Google Scholar 

  • Liu JG, Ma XM, Wang MX, Sun XW (2013) Genotypic differences among rice cultivars in lead accumulation and translocation and the relation with grain Pb levels. Ecotoxicol Environ Saf 90:35–40

    Article  PubMed  CAS  Google Scholar 

  • Marchiol L, Assolari S, Sacco P, Zerbi G (2004) Phytoextraction of heavy metals by canola (Brassica napus) and radish (Raphanus sativus) grown on multi-contaminated soil. Environ Pollut 132:21–27

    Article  PubMed  CAS  Google Scholar 

  • McLaughlin MJ, Parker DR, Clarke JM (1999) Metals and micronutrients-Food safety issues. Field Crops Res 60:146–163

    Article  Google Scholar 

  • Murata I, Hirano T, Saeki Y, Nakagawa S (1970) Cadmium enteropathy, renal osteomalacia (“Ita-Ita”disease in Japan). Bull Soc Int Chir 29:34–42

    PubMed  CAS  Google Scholar 

  • NTP 2000. National Toxicology Program, Tenth Report on Carcinogens, Department of Health and Human Services, Research Triangle Park, NC. pp. III-42–III-44

  • Otte ML, Dekkers MJ, Rozema J, Broekman RA (1991) Uptake of arsenic by Aster tripolium in relation to rhizosphere oxidation. Can J Bot 69:2670–2677

    Article  CAS  Google Scholar 

  • Pedrero Z, Madrid Y, Hartikainen H, Camara C (2008) Protective Effect of Selenium in Broccoli (Brassica oleracea) Plants Subjected to Cadmium Exposure. J Agric Food Chem 56:266–271

    Article  PubMed  CAS  Google Scholar 

  • Rayman MP (2008) Food-chain selenium and human health: emphasis on intake. Br J Nutr 100:254–268

    PubMed  CAS  Google Scholar 

  • Silbergeld EK, Waalkes M, Rice JM (2000) Lead as a carcinogen: experimental evidence and mechanisms of action. Am J Ind Med 38:316–323

    Article  PubMed  CAS  Google Scholar 

  • Small MJ, Nunn AB, Forslund BL, Daily DA (1995) Source attribution of elevated residential soil lead near a battery recycling site. Environ Sci Technol 29:883–895

    Article  PubMed  CAS  Google Scholar 

  • Srivastava M, Ma QL, Rathinasabapathi B, Srivastava P (2009) Effects of selenium on arsenic uptake in arsenic hyperaccumulator Pteris vittata L. Bioresour Technol 100:1115–1121

    Article  PubMed  CAS  Google Scholar 

  • Tang XY, Zhu YG, Cui YS, Duan J, Tang LL (2006) The effect of ageing on the bioaccessibility and fractionation of cadmium in some typical soils of China. Environ Int 32:682–689

    Article  PubMed  Google Scholar 

  • Taspinar MS, Agar G, Yildirim N, Sunar S, Aksakal O, Bozari S (2009) Evaluation of selenium effect on cadmium genotoxicity in Vicia faba using RAPD. J Food Agric Environ 7:857–860

    CAS  Google Scholar 

  • Taylor GJ, Crowder AA (1983) Use of DCB technique for extraction of hydrous iron oxides from roots of wetland plants. Am J Bot 70:1254–1257

    Article  CAS  Google Scholar 

  • UNEP (United Nations Environment Programme) 2008. Draft Final Review of Scientific Information on Cadmium (http://www.unep.org/hazardoussubstances/Portals/9/Lead_Cadmium/docs/Interim_reviews/Final_UNEP_Cadmium_review_Nov_2008.pdf)

  • Verma S, Dubey RS (2003) Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Sci 164:645–655

    Article  CAS  Google Scholar 

  • Williams PN, Lombi E, Sun GX, Scheckel K, Zhu YG, Feng XB, Zhu JM, Carey AM, Adomako E, Lawgali Y, Deacon C, Meharg AA (2009) Selenium Characterization in the Global Rice Supply Chain. Environ Sci Technol 43:6024–6030

    Article  PubMed  CAS  Google Scholar 

  • Williams PN, Villada A, Raab A, Figuerola J, Green AJ, Feldmann J, Meharg AA (2007) Greatly enhanced arsenic shoot assimilation in rice leads to elevated grain levels compared to wheat and barley. Environ Sci Technol 41:6854–6859

    Article  PubMed  CAS  Google Scholar 

  • Yamagata N, Shigematsu I (1970) Cadmium pollution in perspective. Bull Inst Publ Health (Tokyo) 19:1–27

    CAS  Google Scholar 

  • Yang QW, Shu WS, Qiu JW, Wang HB, Lan CY (2004) Lead in paddy soils and rice plants and its potential health risk around Lechang Lead/Zinc Mine, Guangdong. China Environ Int 30:883–889

    Article  CAS  Google Scholar 

  • Yoon JK, Cao XD, Zhou QX, Ma LQ (2006) Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Sci Total Environ 368:456–464

    Article  PubMed  CAS  Google Scholar 

  • Zembala M, Filek M, Walas S, Mrowiec H, Kornas A, Miszalski Z, Hartikainen H (2010) Effect of selenium on macro- and microelement distribution and physiological parameters of rape and wheat seedlings exposed to cadmium stress. Plant Soil 329:457–468

    Article  CAS  Google Scholar 

  • Zhang ZW, Takao W, Shinichiro S, Higashikawa K, Ikeda M (1998) Lead and cadmium contents in cereals and pulses in north-eastern China. Sci Total Environ 220:137–145

    Article  PubMed  CAS  Google Scholar 

  • Zhou XB, Wang WH, Yu SH, Zhou YX (2013) Interactive Effects of Selenium and Mercury on Their Uptake by Rice Sedlings. Res. J. Appl. Sci. Eng Technol 5:4733–4739

    CAS  Google Scholar 

  • Zhuang P, McBride MB, Xia HP, Li NY, Li Z (2009) Health risk from heavy metals via consumption of food crops in the vicinity of Dabaoshan mine. South China Sci Total Environ 407:1551–1561

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Science Foundation of China (21377152, 41371458).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guilan Duan.

Additional information

Responsible Editor: Henk Schat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., Norton, G.J., Duan, G. et al. Effect of selenium fertilization on the accumulation of cadmium and lead in rice plants. Plant Soil 384, 131–140 (2014). https://doi.org/10.1007/s11104-014-2189-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-014-2189-3

Keywords

Navigation