Skip to main content
Log in

Seed-specific increased expression of 2S albumin promoter of sesame qualifies it as a useful genetic tool for fatty acid metabolic engineering and related transgenic intervention in sesame and other oil seed crops

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The sesame 2S albumin (2Salb) promoter was evaluated for its capacity to express the reporter gusA gene encoding β-glucuronidase in transgenic tobacco seeds relative to the soybean fad3C gene promoter element. Results revealed increased expression of gusA gene in tobacco seed tissue when driven by sesame 2S albumin promoter. Prediction based deletion analysis of both the promoter elements confirmed the necessary cis-acting regulatory elements as well as the minimal promoter element for optimal expression in each case. The results also revealed that cis-regulatory elements might have been responsible for high level expression as well as spatio-temporal regulation of the sesame 2S albumin promoter. Transgenic over-expression of a fatty acid desaturase (fad3C) gene of soybean driven by 2S albumin promoter resulted in seed-specific enhanced level of α-linolenic acid in sesame. The present study, for the first time helped to identify that the sesame 2S albumin promoter is a promising endogenous genetic element in genetic engineering approaches requiring spatio-temporal regulation of gene(s) of interest in sesame and can also be useful as a heterologous genetic element in other important oil seed crop plants in general for which seed oil is the harvested product. The study also established the feasibility of fatty acid metabolic engineering strategy undertaken to improve quality of edible seed oil in sesame using the 2S albumin promoter as regulatory element.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abbadi A, Domergue F, Bauer J, Napier JA, Welti R, Zahringer U, Cirpus P, Heinz E (2004) Biosynthesis of very-long-chain polyunsaturated fatty acids in transgenic oilseeds: constraints on their accumulation. Plant Cell 16:2734–2748

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Anai T, Koga M, Tanaka H, Kinoshita T, Rahman MS, Takagi Y (2003) Improvement of rice (Oryza sativa L.) seed oil quality through introduction of a soybean microsomal omega-3 fatty acid desaturase gene. Plant Cell Rep 21:988–992

    Article  PubMed  CAS  Google Scholar 

  • Argos P, Pedersen K, Marks MD, Larklns BA (1982) A structural model for maize zein proteins. J Biol Chem 257:9984–9990

    PubMed  CAS  Google Scholar 

  • Ashri A (1989) Sesame. In: Robbelen G, Downey RK, Ashri A (eds) Oil crops of the world: their breeding and utilization. McGraw Hill, NY, pp 375–387

    Google Scholar 

  • Baud S, Lepiniec L (2010) Physiological and developmental regulation of seed oil production. Prog Lipid Res 49:235–249

    Article  PubMed  CAS  Google Scholar 

  • Baydar H, Turgut I, Turgut K (1999) Variation of certain characters and line selection for yield, oil, oleic acid and linoleic acid in Turkish sesame (Sesamum indicum L.) population. Turk J Agric For 23:431–441

    Google Scholar 

  • Bhaskaran P, Jayabalan N (2006) In vitro mass propagation and diverse callus orientation on Sesamum indicum L.—an important oil plant. J Agric Tech 2:259–269

    Google Scholar 

  • Bilyeu KD, Palavalli L, Sleper DA, Beuselinck PR (2003) Three microsomal omega-3 fatty-acid desaturase genes contribute to soybean linolenic acid levels. Crop Sci 43:1833–1838

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Browse J, IMcCourt P, Somerville C (1986) A mutant of Arabidopsis deficient in C18:3 and C16:3 leaf lipids. Plant Physiol 81:859–864

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Browse J, McConn M, James D, Miquel M (1993) Mutants of Arabidopsis, deficient in the synthesis of α-linolenate. Biochemical and genetic characterization of the endoplasmic reticulum lino-leoyl desaturase. J Biol Chem 268:16345–16351

    PubMed  CAS  Google Scholar 

  • Burow MD, Chlan CA, Sen P, Lisca A, Murai N (1990) High frequency generation of transgenic tobacco plants after modified leaf disk co-cultivation with Agrobacterium tumefaciens. Plant Mol Biol Rep 8:124–139

    Article  Google Scholar 

  • Cho MJ, Widholm J, Vodkin LO (1995) Cassettes for seed-specific expression tested in transformed embryogenic cultures of soybean. Plant Mol Biol Rep 13:255–269

    Article  CAS  Google Scholar 

  • Chowdhury S, Basu A, Kundu S (2014) A new high-frequency Agrobacterium-mediated transformation technique for Sesamum indicum L. using de-embryonated cotyledon as explant. Protoplasma. doi:10.1007/s00709-014-0625-0

    PubMed  Google Scholar 

  • Damude HG, Zhang H, Farrall L, Ripp KG, Tomb JF, Hollerbach D, Yadav NS (2006) Identification of bifunctional D12/ω-3 fatty acid desaturases for improving the ratio of ω-3 to ω-6 fatty acid in microbes and plants. Proc Natl Acad Sci USA 103:9446–9451

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Daraselia ND, Tarchevskaya S, Narita JO (1996) The promoter for tomato 3-hydroxy-3-methylglutaryl coenzyme A reductase gene 2 has unusual regulatory elements that direct high-level expression. Plant Physiol 112:727–733

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • DeBuck S, VanMontagu M, Depicker A (2001) Transgene silencing of invertedly repeated transgenes is released upon deletion of one of the transgenes involved. Plant Mol Biol 46:433–445

    Article  CAS  Google Scholar 

  • DeBuck S, Windels P, De-Loose M, Depicker A (2004) Single-copy T-DNAs integrated at different positions in the Arabidopsis genome display uniform and comparable beta-glucuronidase accumulation levels. Cell Mol Life Sci 61:2632–2645

    Article  CAS  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure from small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Eckert H, LaVallee B, Schweiger BJ, Kinney AJ, Cahoon EB, Clemente T (2006) Co-expression of the borage D6 desaturase and the Arabidopsis D15 desaturase results in high accumulation of stearidonic acid in the seeds of transgenic soybean. Planta 224:1050–1057

    Article  PubMed  CAS  Google Scholar 

  • Feussner I, Wasternakc C (2002) The lipoxygenase pathway. Annu Rev Plant Biol 53:275–297

    Article  PubMed  CAS  Google Scholar 

  • Flores T, Karpova O, Su X, Zeng P, Bilyeu K, Sleper DA, Nguyen HT, Zhang ZJ (2008) Silencing of GmFAD3 gene by siRNA leads to low a-linolenic acids (18:3) of fad3-mutant phenotype in soybean [Glycine max (Merr.)]. Transgenic Res. doi:10.1007/s11248-008-9167-6

    PubMed  Google Scholar 

  • Fujiwara T, Nambara E, Yamagishi K, Goto DB, Naito S (2002) Storage proteins. In: Biologist ASoP (ed) The Arabidopsis book. Rockville, MD, pp 1–12

  • Giacomelli L, Mattea M, Ceballos C (2006) Analysis and characterization of edible oils by chemometric methods. J Am Oil Chem Soc 83:303–308

    Article  CAS  Google Scholar 

  • Hamada T, Kodama H, Nishimura M, Iba K (1996) Modification of fatty acid composition by over- and antisense-expressions of a microsomal ω-3 fatty acid desaturase gene in transgenic tobacco. Transgenic Res 5:115–121

    Article  PubMed  CAS  Google Scholar 

  • Hood EE, Gelvin SB, Melchers LS, Hoekema A (1993) New Agrobacterium helper plasmids for gene-transfer to plants. Transgenic Res 2:208–218

    Article  CAS  Google Scholar 

  • Horsch RB, Fry JE, Hoffman NL, Eichholtz D, Rogers SG, Fraley RT (1985) A simple and general method for transferring genes into plants. Science 227:1229–1231

    Article  CAS  Google Scholar 

  • Huang AHC (1996) Oleosins and oil bodies in seeds and other organs. Plant Physiol 110:1055–1061

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hwang YS, Yang D, McCullar C, Wu L, Chen L, Pham P, Nandi S, Huang N (2002) Analysis of the rice endosperm-specific globulin promoter in transformed rice cells. Plant Cell Rep 20:842–847

    Article  CAS  Google Scholar 

  • James DW Jr, Dooner HK (1990) Isolation of EMS-induced mutants in Arabidopsis altered in seed fatty acid composition. Theor Appl Genet 80:241–245

    Article  PubMed  CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kamal-Eldin A, Appleqvist LǺ (1994) Variation in the compositions of sterols, tocopherols and lignans in seed oils from four Sesamum species. J Am Oil Chem Soc 71:149–156

    Article  CAS  Google Scholar 

  • Kankaanpää P, Sutas Y, Salminen S, Isolauri E (1999) Dietary fatty acids and allergy. Ann Med 3:282–287

    Article  Google Scholar 

  • Kim MJ, Kim H, Shin JS, Chung CH, Ohlrogge JB, Suh MC (2006) Seed-specific expression of sesame microsomal oleic acid desaturase is controlled by combinatorial properties between negative cis-regulatory elements in the SeFAD2 promoter and enhancers in the 5′-UTR intron. Mol Genet Genomics 276:351–368

    Article  PubMed  CAS  Google Scholar 

  • Kridl JC, McCarter DW, Rose RE, Scherer DE, Knutzon DS, Radke SE, Knauf VC (1991) Isolation and characterization of an expressed napin gene from Brassica rapa. Seed Sci Res 1:209–219

    Article  CAS  Google Scholar 

  • Lemieux B, Miquel M, Somerville C, Browse J (1990) Mutants of Arabidopsis with alterations in seed lipid fatty acid composition. Theor Appl Genet 80:234–240

    Article  PubMed  CAS  Google Scholar 

  • Lescot M, Dehais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouze P, Rombauts S (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucl Acids Res 30:325–327

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Liu HL, Yin ZJ, Xiao L, Xu YN, Qu LQ (2012) Identification and evaluation of ω-3 fatty acid desaturase genes for hyperfortifying α-linolenic acid in transgenic rice seed. J Exp Bot 63:3279–3287

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCT method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • McConn M, Hugly S, Browse J, Somerville C (1994) A mutation at the fad8 locus of Arabidopsis identifies a second chloroplast ω-3 desaturase. Plant Physiol 106:1609–1614

    PubMed  CAS  PubMed Central  Google Scholar 

  • Mondal N, Bhat VK, Srivastava SP (2010) Variation in fatty acid composition in Indian germplasm of sesame. J Am Oil Chem Soc 87:1263–1269

    Article  CAS  Google Scholar 

  • Napier JA, Graham IA (2010) Tailoring plant lipid composition: designer oilseeds come of age. Curr Opin Plant Biol 13:329–336

    Article  Google Scholar 

  • Ohlrogge J, Browse J (1995) Lipid biosynthesis. Plant Cell 7:957–970

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ohlrogge JB, Browse J, Somerville CR (1991) The genetics of plant lipids. Biochim Biophys Acta 1082:1–26

    Article  PubMed  CAS  Google Scholar 

  • Orruno E, Morgan MRA (2011) Resistance of purified seed storage proteins from sesame (Sesamum indicum L.) to proteolytic digestive enzymes. Food Chem 128:923–929

    Article  CAS  Google Scholar 

  • Pernollet JC (1978) Protein bodies of seeds: ultrastructure, biochemistry, biosynthesis and degradation. Phytochemistry 17:1473–1480

    Article  CAS  Google Scholar 

  • Potenza C, Aleman L, Sengupta-Gopalan C (2004) Targeting transgene expression in research, agricultural, and environmental applications: promoters used in plant transformation. In Vitro Cell Dev Biol Plant 40:1–22

    Article  CAS  Google Scholar 

  • Poudyal H, Panchal KS, Diwan V, Brown L (2011) Omega-3 fatty acids and metabolic syndrome: effects and emerging mechanisms of action. Prog Lipid Res 50:372–387

    Article  PubMed  CAS  Google Scholar 

  • Puttick D, Dauk M, Lozinsky S, Smith MA (2009) Overexpression of a FAD3 desaturase increases synthesis of a polymethylene interrupted dienoic fatty acid in seeds of Arabidopsis thaliana L. Lipids 44:753–757

    Article  PubMed  CAS  Google Scholar 

  • Qinggele C, Mingchun L, Dongsheng W, Yi C, Laijun X (2007) Isolation and sequencing analysis on the seed-specific promoter from soybean. Front Agric China 1:17–23

    Article  Google Scholar 

  • Qu LQ, Xing YP, Liu WX, Xu XP, Song YR (2008) Expression pattern and activity of six glutelin gene promoters in transgenic rice. J Exp Bot 59:2417–2424

    Article  CAS  PubMed Central  Google Scholar 

  • Rasmussen TB, Donaldson IA (2006) Investigation of the endosperm specific sucrose synthase promoter from rice using transient expression of reporter genes in guar seed tissue. Plant Cell Rep 25:1035–1042

    Article  PubMed  CAS  Google Scholar 

  • Rooke L, Byrne D, Salgueiro S (2000) Marker gene expression driven by the maize ubiquitin promoter in transgenic wheat. Ann Appl Biol 136:167–172

    Article  CAS  Google Scholar 

  • Rushton PJ, Reinstadler A, Lipka V, Lippok B, Somssich EI (2002) Synthetic plant promoters containing defined regulatory elements provide novel insights into pathogen- and wound-induced signaling. Plant Cell 14:749–762

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Salunkhe DK, Chavan JK, Adsule RN, Kadam SS (1992) Sesame. World oilseeds: history, technology and utilization. Van Nostrand Reinhold, New York, pp 371–402

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, NY

    Google Scholar 

  • Shewry PR, Napier JA, Tatham AS (1995) Seed storage proteins: structure and biosynthesis. Plant Cell 7:945–956

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Shimada T, Wakita Y, Otani M, Iba K (2000) Modification of fatty acid composition in rice plants by transformation with a tobacco microsomal ω-3 fatty acid desaturase gene (NtFAD3). Plant Biotechnol 17:43–48

    Article  CAS  Google Scholar 

  • Simopoulos AP (2002) The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed Pharmacother 56:365–379

    Article  PubMed  CAS  Google Scholar 

  • Tai SSK, Wu LSH, Chen ECF, Tzen JTC (1999) Molecular cloning of 11S globulin and 2S albumin, the two major seed storage proteins in sesame. J Agric Food Chem 47:4932–4938

    Article  PubMed  CAS  Google Scholar 

  • Tan H, Yang X, Zhang F, Zheng X, Qu C, Mu J, Fu F, Li J, Guan R, Zhang H, Wang G, Zuo J (2011) Enhanced seed oil production in canola by conditional expression of Brassica napus LEAFY COTYLEDON1 and LEC1-LIKE in developing seeds. Plant Physiol 156:1577–1588

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Twyman RM (2003) Growth and development: control of gene expression, regulation of transcription. In: Thomas B, Murphy DJ, Murray B (eds) Encyclopedia of applied plant sciences. Elsevier Science, London, pp 558–567

    Google Scholar 

  • Verwoerd TC, Dekker BM, Hoekema A (1989) A small-scale procedure for the rapid isolation of plant RNAs. Nucl Acids Res 17:2362

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Vicente-Carbajosa J, Moose SP, Parsons RL, Schimdt RJ (1997) A maize zinc finger protein binds the prolamin box in zein gene promoters and interacts with the basic leucine zipper transcriptional activator opaque 2. Proc Natl Acad Sci USA 94:7685–7690

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Vrinten P, Hu ZHY, Munchinsky MA, Rowland G, Qiu X (2005) Two FAD3 desaturase genes control the level of linolenic acid in flax seed. Plant Physiol 39:79–87

    Article  Google Scholar 

  • Wang Y, Zhu W, Levy DE (2006) Nuclear and cytoplasmic mRNA quantification by SYBR green based real-time RT-PCR. Methods 39:356–362

    Article  PubMed  CAS  Google Scholar 

  • Yadav NS, Wierzbicki A, Aegerter M, Caster CS, Perez-Grau L, Kinney AJ, Hitz WD, Booth JR Jr, Schweiger B, Stecca KL, Allen SM, Blackwell M, Reiter RS, Carlson TJ, Russell SH, Feldmann KA, Pierce J, Browse J (1993) Cloning of higher plant ω-3 fatty acid desaturases. Plant Physiol 103:467–476

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yadav MM, Chaudhary D, Sainger M, Jaiwal KP (2010) Agrobacterium tumefaciens-mediated genetic transformation of sesame (Sesamum indicum L.). Plant Cell Tissue Organ Cult 103:377–386

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors offer their appreciation for Gayatri Aditya and Sona Dogra for their technical assistance during the course of this study, Natasha Das for her help in making sections of plant tissues, and Meghnath Prasad for secretarial assistance in preparing this report. Financial assistance from Indian Council of Agricultural Research (NAIP/ICAR) in terms of grant support (Project component code 4C1090) to laboratory and fellowship to RKB is thankfully acknowledged. Finally, the authors extend their grateful appreciation for two anonymous reviewers whose Comments and suggestions have helped immensely to improve the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soumitra Kumar Sen.

Additional information

Ranjeet Kaur and T. Gayatri have contributed equally to this work.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhunia, R.K., Chakraborty, A., Kaur, R. et al. Seed-specific increased expression of 2S albumin promoter of sesame qualifies it as a useful genetic tool for fatty acid metabolic engineering and related transgenic intervention in sesame and other oil seed crops. Plant Mol Biol 86, 351–365 (2014). https://doi.org/10.1007/s11103-014-0233-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-014-0233-6

Keywords

Navigation