Skip to main content
Log in

Benzoxazolin-2-(3H)-one reduces photosynthetic activity and chlorophyll fluorescence in soybean

  • Brief Communication
  • Published:
Photosynthetica

Abstract

Benzoxazolin-2-(3H)-one (BOA) has been tested in many plants species, but not in soybean (Glycine max). Thus, a hydroponic experiment was conducted to assess the effects of BOA on soybean photosynthesis. BOA reduced net photosynthetic rate, stomatal conductance, and effective quantum yield of PSII photochemistry without affecting intercellular CO2 concentration or maximal quantum yield of PSII photochemistry. Results revealed that the reduced stomatal conductance restricted entry of CO2 into substomatal spaces, thus limiting CO2 assimilation. No change found in intercellular CO2 concentration and reduced effective quantum yield of PSII photochemistry revealed that CO2 was not efficiently consumed by the plants. Our data indicated that the effects of BOA on soybean photosynthesis occurred due to the reduced stomatal conductance and decreased efficiency of carbon assimilation. The accumulation of BOA in soybean leaves reinforced these findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

BOA:

benzoxazolin-2-(3H)-one

Chl:

chlorophyll

C i :

intercellular CO2 concentration

DAC:

days of cultivation

E :

transpiration rate

F0 :

minimal fluorescence yield of the light-adapted state

Fm :

maximal fluorescence yield of the dark-adapted state

Fv :

variable fluorescence

Fv/Fm :

maximal quantum yield of PSII photochemistry

g s :

stomatal conductance

P N :

net photosynthetic rate

ROS:

reactive oxygen species

ΦPSII :

effective quantum yield of PSII photochemistry

References

  • Ashraf M., Harris P.J.C.: Photosynthesis under stressful environments: An overview. — Photosynthetica 51: 163–190, 2013.

    Article  CAS  Google Scholar 

  • Baker N.R., Harbinson J., Kramer D.M.: Determining the limitations and regulation of photosynthetic energy transduction in leaves. — Plant Cell Environ. 30: 1107–1125, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Batish D.R., Singh H.P., Setia N. et al.: 2-Benzoxazolinone (BOA) induced oxidative stress, lipid peroxidation and changes in some antioxidant enzymes activities in mung bean (Phaseolus aureus). — Plant Physiol. Bioch. 44: 819–827, 2006.

    Article  CAS  Google Scholar 

  • Burgos N.R., Talbert R.E., Mattice J.D.: Cultivar and age differences in the production of allelochemicals by Secale cereale. — Weed Sci. 47: 481–485, 1999.

    CAS  Google Scholar 

  • Centritto M., Loreto F., Chartzoulakis K.: The use of low [CO2] to estimate diffusional and non-diffusional limitations of photosynthetic capacity of salt-stressed olive saplings. — Plant Cell Environ. 26: 585–594, 2003.

    Article  Google Scholar 

  • Demmig-Adams B., Adams W.W., Barker D.H. et al.: Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation. — Plant Physiol. 98: 253–264, 1996.

    Article  CAS  Google Scholar 

  • Dhima K., Vasilakoglou I.B., Eleftherohorinos I.G. et al.: Allelopathic potencial of winter cereal cover crop mulches on grass weed suppression and sugarbeet development. — Crop Sci. 46: 1682–1691, 2006.

    Article  Google Scholar 

  • Dong J., Wu F., Zhang G.: Influence of cadmium on antioxidant capacity and four microelement concentrations in tomato seedlings (Lycopersicon esculentum). — Chemosphere 64: 1659–1666, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Farquhar G.D., Sharkey T.D.: Stomatal conductance and photosynthesis. — Annu. Rev. Plant Physiol. 33: 317–345, 1982.

    Article  CAS  Google Scholar 

  • Genty B., Briantais J.M., Baker N.R.: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. — Biochim. Biophys. Acta 990: 87–92, 1989.

    Article  CAS  Google Scholar 

  • Hall D.O., Rao K.K.: Photosynthesis, 6th ed. Pp. 160–174. Cambridge University Press, Cambridge 1999.

    Google Scholar 

  • Hussain M.I., González L., Chiapusio G. et al.: Benzoxazolin-2(3H)-one (BOA) induced changes in leaf water relations, photosynthesis and carbon isotope discrimination in Lactuca sativa. — Plant Physiol. Bioch. 49: 825–834, 2011.

    Article  CAS  Google Scholar 

  • Hussain M.I., Reigosa M.J.: A chlorophyll fluorescence analysis of photosynthetic efficiency, quantum yield and photon energy dissipation in PSII antennae of Lactuca sativa L. leaves exposed to cinnamic acid. — Plant Physiol. Biochem. 49: 1290–1298, 2011b.

    Article  CAS  PubMed  Google Scholar 

  • Hussain M.I., Reigosa M.J.: Allelochemical stress inhibits growth, leaf water relations, PSII photochemistry, nonphotochemical fluorescence quenching, and heat energy dissipation in three C3 perennial species. — J. Exp. Bot. 62: 4533–4545, 2011a.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiapusio G., Pellissier F., Gallet C.: Uptake and translocation of phytochemical 2-benzoxazolinone (BOA) in radish seeds and seedlings. — J. Exp. Bot. 55: 1587–1592, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Krause G.H., Wies E.: Chlorophyll fluorescence as a tool in plant physiology. II. Interpretation of fluorescence signals. — Photosynth. Res. 5: 139–157, 1984.

    Article  CAS  PubMed  Google Scholar 

  • Loreto F., Centritto M., Chartzoulakis K.: Photosynthetic limitations in olive cultivars with different sensitivity to salt stress. — Plant Cell Environ. 26: 595–601, 2003.

    Article  CAS  Google Scholar 

  • Lu K.X., Cao B.H., Feng X.P. et al.: Photosynthetic response of salt-tolerant and sensitive soybean varieties. — Photosynthetica 47: 381–387, 2009.

    Article  CAS  Google Scholar 

  • Macías F.A., Marín D., Oliveros-Bastidas A. et al.: Structureactivity relationships (SAR) studies of benzoxazinones, their degradation products and analogues. Phytotoxicity on Standard Target Species (STS). — J. Agric. Food Chem. 53: 538–548, 2005.

    Article  PubMed  Google Scholar 

  • Macías F.A., Marín D., Oliveros-Batidas A. et al.: Rediscovering the bioactivity and ecological role of 1,4-benzoxazinones. — Nat. Prod. Rep. 26: 478–489, 2009.

    Article  PubMed  Google Scholar 

  • Macías F.A., Molinillo J.M.G., Varela R.M. et al.: Allelopathy-a natural alternative for weed control. — Pest Manage. Sci. 63: 327–348, 2007.

    Article  Google Scholar 

  • Rice C.P., Cai G., Teasdale J.R.: Concentration and allelopathic effect of benzoxazinoid compounds in soil treated with rye (Secale cereale) cover crop. — J. Agric. Food Chem. 60: 4471–4479, 2012.

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-Moreiras A.M., Martínez-Peñalver A., Reigosa M.J.: Early senescence induced by 2-3H-benzoxazolinone (BOA) in Arabidopsis thaliana. — J. Plant Physiol. 168: 863–870, 2011.

    Article  PubMed  Google Scholar 

  • Sánchez-Moreiras A.M., Oliveros-Bastidas A., Reigosa M.J.: Reduced photosynthetic activity is directly correlated with 2-(3H)-benzoxazolinone accumulation in lettuce leaves. — J. Chem. Ecol. 36: 205–209, 2010.

    Article  PubMed  Google Scholar 

  • Sánchez-Moreiras A.M., Reigosa M.J.: Whole plant response of lettuce after root exposure to BOA (2(3H)-benzoxazolinone). — J. Chem. Ecol. 31: 2689–2703, 2005.

    Article  PubMed  Google Scholar 

  • Ye S.F., Yu J.Q., Peng Y.H. et al.: Incidence of Fusarium wilt in Cucumis sativus L. is promoted by cinnamic acid, an autotoxin in root exudates. — Plant Soil 263: 143–150, 2004.

    Article  CAS  Google Scholar 

  • Zhou Y.H., Yu J.Q.: Allelochemicals and photosynthesis. — In: Reigosa M.J., Pedrol N., González L. (ed.): Allelopathy: A Physiological Process with Ecological Implications. Pp. 127–139. Springer, Dordrecht 2006.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Ferrarese-Filho.

Additional information

Acknowledgments: This work was supported by grants from The Brazilian Council for Scientific and Technological Development - CNPq (no. 470705/2011-6). M.L.L. Ferrarese and O. Ferrarese-Filho are research fellows of CNPq. A.V. Parizotto is the recipient of a CAPES fellowship. The authors are grateful to A.M.D. Ramos for technical assistance.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parizotto, A.V., Marchiosi, R., Bubna, G.A. et al. Benzoxazolin-2-(3H)-one reduces photosynthetic activity and chlorophyll fluorescence in soybean. Photosynthetica 55, 386–390 (2017). https://doi.org/10.1007/s11099-016-0656-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-016-0656-1

Additional key words

Navigation