Skip to main content

Advertisement

Log in

Electrosprayed Myocet-like Liposomes: An Alternative to Traditional Liposome Production

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Although doxorubicin (DXR) has been on the market for many years as an anti-cancer drug, a number of serious dose-limiting toxicities hinder its widespread use. To reduce the known toxicities of soluble DXR, various liposomes have been designed including Doxil, Caelyx, and Myocet. Myocet, a non-PEGylated liposomal formulation containing DXR, was found to reduce the toxicities associated with soluble DXR and has been used in Europe and Canada (but not the US) as a first line therapy. While regarded as successful, Myocet does have some formulation drawbacks including stability, drug release, and an arduous formulation and remote loading method for preparation.

Methods

Our lab has developed a liposomal electrospray process in which formulation and remote loading occurs continuously in one step, cutting down on the total time of production and increasing the drug retention in the liposomes with respect to more conventional methods. Electrosprayed Myocet-like liposomes were then tested in vitro for release kinetics and cytotoxicity with respect to a more conventional formulation method.

Results

Myocet-like liposomes manufactured via electrospray had similar DXR loadings, hydrodynamic diameters, morphologies, and cytotoxic profiles as their thin-film hydration counterparts, but their release profiles were drastically prolonged.

Conclusions

Our findings indicate that electrospray is a viable manufacturing procedure to scalably produce Myocet-like liposomes that appear to be more stable than those formulated through thin-film hydration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

Chol:

Cholesterol

DLS:

Dynamic light scattering

DXR:

Doxorubicin

EggPC:

L-α-phosphatidylcholine from chicken egg

FDA:

Food and drug administration

HFS:

Hand-foot syndrome

TEM:

Transmission electron microscopy

References

  1. FDA D. FDA approved drug products In.; 2016.

  2. Tacar O, Sriamornsak P, Dass CR. Doxorubicin: an update on anticancer molecular action, toxicity and novel drug delivery systems. J Pharm Pharmacol. 2013;65(2):157–70.

    Article  CAS  PubMed  Google Scholar 

  3. Fritze A, Hens F, Kimpfler A, Schubert R, Peschka-Suss R. Remote loading of doxorubicin into liposomes driven by a transmembrane phosphate gradient. Biochim Biophys Acta. 2006;1758(10):1633–40.

    Article  CAS  PubMed  Google Scholar 

  4. Rivankar S. An overview of doxorubicin formulations in cancer therapy. J Cancer Res Ther. 2014;10(4):853–8.

    Article  PubMed  Google Scholar 

  5. Collier MA, Gallovic MD, Peine KJ, Duong AD, Bachelder EM, Gunn JS, et al. Delivery of host cell-directed therapeutics for intracellular pathogen clearance. Expert Rev Anti-Infect Ther. 2013;11(11):1225–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Song G, Wu H, Yoshino K, Zamboni WC. Factors affecting the pharmacokinetics and pharmacodynamics of liposomal drugs. J Liposome Res. 2012;22(3):177–92.

    Article  CAS  PubMed  Google Scholar 

  7. Chang HI, Yeh MK. Clinical development of liposome-based drugs: formulation, characterization, and therapeutic efficacy. Int J Nanomedicine. 2012;7:49–60.

    CAS  PubMed  Google Scholar 

  8. Barenholz Y. Doxil(R)—the first FDA-approved nano-drug: lessons learned. J Control Release: Off J Control Release Soc. 2012;160(2):117–34.

    Article  CAS  Google Scholar 

  9. Gabizon A, Catane R, Uziely B, Kaufman B, Safra T, Cohen R, et al. Prolonged circulation time and enhanced accumulation in malignant exudates of doxorubicin encapsulated in polyethylene-glycol coated liposomes. Cancer Res. 1994;54(4):987–92.

    CAS  PubMed  Google Scholar 

  10. Suzuki T, Ichihara M, Hyodo K, Yamamoto E, Ishida T, Kiwada H, et al. Accelerated blood clearance of PEGylated liposomes containing doxorubicin upon repeated administration to dogs. Int J Pharm. 2012;436(1-2):636–43.

    Article  CAS  PubMed  Google Scholar 

  11. Pharmaceuticals J. Clinical efficacy of doxil. In.; 2014.

  12. Desai N. Challenges in development of nanoparticle-based therapeutics. AAPS J. 2012;14(2):282–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Agency EM. Myocet package insert. In.; 2010.

  14. Huang Z, Li X, Zhang T, Song Y, She Z, Li J, et al. Progress involving new techniques for liposome preparation. Asian J Pharm Sci. 2014;9(4):176–82.

    Article  Google Scholar 

  15. Duong AD, Collier MA, Bachelder EM, Wyslouzil BE, Ainslie KM. One step encapsulation of small molecule drugs in liposomes via electrospray-remote loading. Mol Pharm. 2016;13(1):92–9.

    Article  CAS  PubMed  Google Scholar 

  16. Jaafar-Maalej C, Diab R, Andrieu V, Elaissari A, Fessi H. Ethanol injection method for hydrophilic and lipophilic drug-loaded liposome preparation. J Liposome Res. 2010;20(3):228–43.

    Article  CAS  PubMed  Google Scholar 

  17. Swenson CE, Perkins WR, Roberts P, Janoff AS. Liposome technology and the development of Myocet (liposomal doxorubicin citrate). Breast. 2001;10:1–7.

    Article  Google Scholar 

  18. cancer.gov. Cancer statistics. In.; 2016.

  19. Elkins C. How much cancer costs. In. Drugwatch; 2015.

  20. Fox M. Can we get cheaper cancer drugs? More than 100 experts weigh in. In. NBC; 2015.

  21. Baalousha M, Lead JR. Nanoparticle dispersity in toxicology. Nat Nanotechnol. 2013;8(5):308–9.

    Article  CAS  PubMed  Google Scholar 

  22. Fung YS. Microfluidic chip-capillary electrophoresis devices; 2016.

  23. Batist G, Barton J, Chaikin P, Swenson C, Welles L. Myocet (liposome-encapsulated doxorubicin citrate): a new approach in breast cancer therapy. Expert Opin Pharmacother. 2002;3(12):1739–51.

    Article  CAS  PubMed  Google Scholar 

  24. Mross K, Niemann B, Massing U, Drevs J, Unger C, Bhamra R, et al. Pharmacokinetics of liposomal doxorubicin (TLC-D99; Myocet) in patients with solid tumors: an open-label, single-dose study. Cancer Chemother Pharmacol. 2004;54(6):514–24.

    Article  CAS  PubMed  Google Scholar 

  25. Information FR. Liposome drug products. In.; 2001.

  26. Maksimenko A, Dosio F, Mougin J, Ferrero A, Wack S, Reddy LH, et al. A unique squalenoylated and nonpegylated doxorubicin nanomedicine with systemic long-circulating properties and anticancer activity. Proc Natl Acad Sci U S A. 2014;111(2):E217–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Song G, Petschauer JS, Madden AJ, Zamboni WC. Nanoparticles and the mononuclear phagocyte system: pharmacokinetics and applications for inflammatory diseases. Curr Rheumatol Rev. 2014;10(1):22–34.

    Article  CAS  PubMed  Google Scholar 

  28. Heney M, Alipour M, Vergidis D, Omri A, Mugabe C, Th’ng J, et al. Effectiveness of liposomal paclitaxel against MCF-7 breast cancer cells. Can J Physiol Pharmacol. 2010;88(12):1172–80.

    Article  CAS  PubMed  Google Scholar 

  29. Tomankova K, Polakova K, Pizova K, Binder S, Havrdova M, Kolarova M, et al. In vitro cytotoxicity analysis of doxorubicin-loaded/superparamagnetic iron oxide colloidal nanoassemblies on MCF7 and NIH3T3 cell lines. Int J Nanomedicine. 2015;10:949–61.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Yang Y, Yang Y, Xie X, Cai X, Zhang H, Gong W, et al. PEGylated liposomes with NGR ligand and heat-activable cell-penetrating peptide-doxorubicin conjugate for tumor-specific therapy. Biomaterials. 2014;35(14):4368–81.

    Article  CAS  PubMed  Google Scholar 

  31. Jain AS, Goel PN, Shah SM, Dhawan VV, Nikam Y, Gude RP, et al. Tamoxifen guided liposomes for targeting encapsulated anticancer agent to estrogen receptor positive breast cancer cells: in vitro and in vivo evaluation. Biomed Pharmacother Biomed Pharmacother. 2014;68(4):429–38.

    Article  CAS  PubMed  Google Scholar 

  32. Almeria B, Fahmy TM, Gomez A. A multiplexed electrospray process for single-step synthesis of stabilized polymer particles for drug delivery. J Control Release: Off J Control Release Soc. 2011;154(2):203–10.

    Article  CAS  Google Scholar 

  33. Ponce de Leon PJ, Hill FA, Heubel EV, Velasquez-Garcia LF. Parallel nanomanufacturing via electrohydrodynamic jetting from microfabricated externally-fed emitter arrays. Nanotechnology. 2015;26(22):225301.

    Article  PubMed  Google Scholar 

  34. Anikumar G, Gaonkar NV, Khare AR, Sobel R. Microencapsulation in the food industry; 2014.

Download references

Acknowledgments and Disclosures

We would like to thank the Chapel Hill Analytical and Nanofabrication Laboratory (CHANL) for allowing us access to use the imaging equipment used within this manuscript. Also, we would like to thank the lab of Leaf Huang at UNC Chapel Hill for giving us the MCF-7 breast cancer cells. Lastly, we would like to thank Dr. Anthony D. Duong and Matthew D. Gallovic for their expertise in this area of research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristy M. Ainslie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Collier, M.A., Bachelder, E.M. & Ainslie, K.M. Electrosprayed Myocet-like Liposomes: An Alternative to Traditional Liposome Production. Pharm Res 34, 419–426 (2017). https://doi.org/10.1007/s11095-016-2072-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-016-2072-4

KEY WORDS

Navigation