Skip to main content

Advertisement

Log in

Triple Drug Combination of Zidovudine, Efavirenz and Lamivudine Loaded Lactoferrin Nanoparticles: an Effective Nano First-Line Regimen for HIV Therapy

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

To enhance efficacy, bioavailability and reduce toxicity of first-line highly active anti-retroviral regimen, zidovudine + efavirenz + lamivudine loaded lactoferrin nanoparticles were prepared (FLART-NP) and characterized for physicochemical properties, bioactivity and pharmacokinetic profile.

Methods

Nanoparticles were prepared using sol-oil protocol and characterized using different sources such as FE-SEM, AFM, NanoSight, and FT-IR. In-vitro and in-vivo studies have been done to access the encapsulation-efficiency, cellular localization, release kinetics, safety analysis, biodistribution and pharmacokinetics.

Results

FLART-NP with a mean diameter of 67 nm (FE-SEM) and an encapsulation efficiency of >58% for each drug were prepared. In-vitro studies suggest that FLART-NP deliver the maximum of its payload at pH5 with a minimum burst release throughout the study period with negligible toxicity to the erythrocytes plus improved in-vitro anti-HIV activity. FLART-NP has improved the in-vivo pharmacokinetics (PK) profiles over the free drugs; an average of >4fold increase in AUC and AUMC, 30% increase in the Cmax, >2fold in the half-life of each drug. Biodistribution data suggest that FLART-NP has improved the bioavailability of all drugs with less tissue-related inflammation as suggested with histopathological evaluation

Conclusions

The triple-drug loaded nanoparticles have various advantages against soluble (free) drug combination in terms of enhanced bioavailability, improved PK profile and diminished drug-associated toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

3TC or LMV:

Lamivudine

ART:

Antiretroviral therapy

ARV:

Antiretroviral

AZT:

Azidothymidine or Zidovudine

DL:

Drug loading

DMSO:

Di methyl sulfoxide

EE:

Encapsulation efficiency

EFV:

Efavirenz

FLART-NP:

First-Line ART Nanoparticles

FT-IR:

Fourier transform infrared spectroscopy

HPLC:

High Performance Liquid Chromatography

HR:

Hemolysis rate

IC50 :

50% Inhibitory concentration

Lf:

Lactoferrin

NP:

Nanoparticles

NTA:

Nanoparticle tracking analysis

PBS:

Phosphate-buffered saline

sol:

Soluble or free

REFERENCES

  1. Langeand JM, Schwartlander B. Introduction 15 million on ART by 2015: a realistic target or just a dream. Curr Opin HIV AIDS. 2013;8:1–3.

    Article  Google Scholar 

  2. Artsand EJ, Hazuda DJ. HIV-1 antiretroviral drug therapy. Cold Spring Harb Perspect Med. 2012;2:a007161.

    Google Scholar 

  3. Boyapalle S, Mohapatra S, Mohapatra S. Nanotechnology applications to HIV vaccines and microbicides. J Global Infect Dis. 2012;4:62–8.

    Article  Google Scholar 

  4. Nittayananta W, Talungchit S, Jaruratanasirikul S, Silpapojakul K, Chayakul P, Nilmanat A, et al. Effects of long-term use of HAART on oral health status of HIV-infected subjects. J Oral Pathol Med: Off Publ Int Assoc Oral Pathol Am Acad Oral Pathol. 2010;39:397–406.

    CAS  Google Scholar 

  5. Younai FS. Thirty years of the human immunodeficiency virus epidemic and beyond. Int J Oral Sci. 2013;5:191–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Perno CF. The discovery and development of HIV therapy: the new challenges. Ann Ist Super Sanita. 2011;47:41–3.

    CAS  PubMed  Google Scholar 

  7. E.H. Humphreys, L.W. Chang, and J. Harris. Antiretroviral regimens for patients with HIV who fail first-line antiretroviral therapy. Cochrane Database Syst Rev. CD006517 (2010).

  8. Kebba A, Atwine D, Mwebaze R, Kityo C, Nakityo R, Peter M. Therapeutic responses to AZT + 3TC + EFV in advanced antiretroviral naive HIV type 1-infected Ugandan patients. AIDS Res Hum Retrovir. 2002;18:1181–7.

    Article  CAS  PubMed  Google Scholar 

  9. Trotta MP, Ammassari A, Melzi S, Zaccarelli M, Ladisa N, Sighinolfi L, et al. Treatment-related factors and highly active antiretroviral therapy adherence. J Acquir Immune Defic Syndr. 2002;31 Suppl 3:S128–131.

    Article  PubMed  Google Scholar 

  10. Sun T, Zhang YS, Pang B, Hyun DC, Yang M, Xia Y. Engineered nanoparticles for drug delivery in cancer therapy. Angew Chem. 2014;53:12320–64.

    CAS  Google Scholar 

  11. Freeling JP, Koehn J, Shu C, Sun J, Ho RJ. Anti-HIV drug-combination nanoparticles enhance plasma drug exposure duration as well as triple-drug combination levels in cells within lymph nodes and blood in primates. AIDS Res Hum Retrovir. 2015;31:107–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Khalil NM, Carraro E, Cotica LF, Mainardes RM. Potential of polymeric nanoparticles in AIDS treatment and prevention. Expert Opin Drug Deliv. 2011;8:95–112.

    Article  CAS  PubMed  Google Scholar 

  13. Leyva-Gomez G, Cortes H, Magana JJ, Leyva-Garcia N, Quintanar-Guerrero D, Floran B. Nanoparticle technology for treatment of Parkinson’s disease: the role of surface phenomena in reaching the brain. Drug Discov Today. 2015;20:824–37.

    Article  CAS  PubMed  Google Scholar 

  14. Panyamand J, Labhasetwar V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev. 2003;55:329–47.

    Article  Google Scholar 

  15. Jacobson GB, Shinde R, Contag CH, Zare RN. Sustained release of drugs dispersed in polymer nanoparticles. Angew Chem. 2008;47:7880–2.

    Article  CAS  Google Scholar 

  16. Jia L. Nanoparticle formulation increases oral bioavailability of poorly soluble drugs: approaches experimental evidences and theory. Curr Nanosci. 2005;1:237–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cho M, Cho WS, Choi M, Kim SJ, Han BS, Kim SH, et al. The impact of size on tissue distribution and elimination by single intravenous injection of silica nanoparticles. Toxicol Lett. 2009;189:177–83.

    Article  CAS  PubMed  Google Scholar 

  18. Florisa R, Recio I, Berkhout B, Visser S. Antibacterial and antiviral effects of milk proteins and derivatives thereof. Curr Pharm Des. 2003;9:1257–75.

    Article  PubMed  Google Scholar 

  19. Leon-Sicairos N, Reyes-Lopez M, Ordaz-Pichardo C, de la Garza M. Microbicidal action of lactoferrin and lactoferricin and their synergistic effect with metronidazole in Entamoeba histolytica. Biochem Cell Biol. 2006;84:327–36.

    Article  CAS  PubMed  Google Scholar 

  20. Ahmed F, Ali MJ, Kondapi AK. Carboplatin loaded protein nanoparticles exhibit improve anti-proliferative activity in retinoblastoma cells. Int J Biol Macromol. 2014;70:572–82.

    Article  CAS  PubMed  Google Scholar 

  21. Kumar P, Lakshmi YS, Golla BCK, Kondapi AK. Improved safety, bioavailability and pharmacokinetics of zidovudine through lactoferrin nanoparticles during oral administration in rats. PLoS ONE. 2015;10:e0140399.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Krishna AD, Mandraju RK, Kishore G, Kondapi AK. An efficient targeted drug delivery through apotransferrin loaded nanoparticles. PLoS ONE. 2009;4:e7240.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kalaivani T, Rajasekaran C, Suthindhiran K, Mathew L. Free radical scavenging, cytotoxic and hemolytic activities from leaves of acacia nilotica (L.) wild. ex. Delile subsp. Indica (Benth.) Brenan. Evid Based Complement Alternat Med: eCAM. 2011;2011, 274741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang J, Chen XG, Li YY, Liu CS. Self-assembled nanoparticles based on hydrophobically modified chitosan as carriers for doxorubicin. Nanomed: Nanotechnol Biol Med. 2007;3:258–65.

    CAS  Google Scholar 

  25. Burger DM, Rosing H, Koopman FJ, Mennhorst PL, Mulder JW, Bult A, et al. Determination of 3′-amino-3′-deoxythymidine, a cytotoxic metabolite of 3′-azido-3′-deoxythymidine, in human plasma by ion-pair high-performance liquid chromatography. J Chromatogr. 1993;622:235–42.

    Article  CAS  PubMed  Google Scholar 

  26. Bienvenu E, Hoffmann KJ, Ashton M, Kayumba PC. A rapid and selective HPLC-UV method for the quantitation of efavirenz in plasma from patients on concurrent HIV/AIDS and tuberculosis treatments. Biomed Chromatogr: BMC. 2013;27:1554–9.

    Article  CAS  PubMed  Google Scholar 

  27. Alebouyeh M, Amini H. Rapid determination of lamivudine in human plasma by high-performance liquid chromatography. J Chromatogr B Anal Technol Biomed Life Sci. 2015;975:40–4.

    Article  CAS  Google Scholar 

  28. Wang SB, Chen AZ, Weng LJ, Chen MY, Xie XL. Effect of drug-loading methods on drug load, encapsulation efficiency and release properties of alginate/poly-L-arginine/chitosan ternary complex microcapsules. Macromol Biosci. 2004;4:27–30.

    Article  PubMed  Google Scholar 

  29. Golla K, Cherukuvada B, Ahmed F. Kondapi AKEfficacy, safety and anticancer activity of protein nanoparticle-based delivery of doxorubicin through intravenous administration in rats. PLoS One. 2012;7(12), e51960.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kim MJ, Shin S. Toxic effects of silver nanoparticles and nanowires on erythrocyte rheology. Food Chem Toxicol. 2014;67:80–6.

    Article  CAS  PubMed  Google Scholar 

  31. T Mocan. Hemolysis as expression of nanoparticles - induced cytotoxicity in red blood cells. 2013;1:7–12.

  32. Ciaffi L, Koulla-Shiro S, Sawadogo A, le Moing V, Eymard-Duvernay S, Izard S, et al. Efficacy and safety of three second-line antiretroviral regimens in HIV-infected patients in Africa. AIDS. 2015;29:1473–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Choi HS, Liu W, Misra P, Tanaka E, Zimmer JP, Itty Ipe B, et al. Renal clearance of quantum dots. Nat Biotechnol. 2007;25:1165–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. 3rd Owens DE, Peppas NA. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm. 2006;307:93–102.

    Article  CAS  PubMed  Google Scholar 

  35. Gaur PK, Mishra S, Bajpai M, Mishra A. Enhanced oral bioavailability of efavirenz by solid lipid nanoparticles: in-vitro drug release and pharmacokinetics studies. Biomed Res Int. 2014;2014:363404.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Mukherjee S, Ray S, Thakur RS. Solid lipid nanoparticles: a modern formulation approach in drug delivery system. Indian J Pharm Sci. 2009;71:349–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Abd Elgadir M, Uddin S, Ferdosh S, Adam A, Chowdhury AJK, Sarker ZI. Impact of chitosan composites and chitosan nanoparticle composites on various drug delivery systems: A review. J Food Drug Anal. 2014;23:619–29.

    Article  Google Scholar 

  38. Koduriand PR, Parekh S. Zidovudine-related anemia with reticulocytosis. Ann Hematol. 2003;82:184–5.

    Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

PK (orcid.org/0000-0003-1038-6149) is UGC-NET fellow, YSL is ICMR-SRF fellow. This work was supported by Department of Science and Technology under Nano mission (#SR/NM/NS-1127/2011). AKK is recipient of FRPS BSR UGC one time grant. PK and AKK conceived and designed the experiments. PK and YSL did the experiments and analyzed the data. AKK and PK wrote the manuscript. The authors report no conflicts of interest in this work

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anand K Kondapi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 489 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, P., Lakshmi, Y.S. & Kondapi, A.K. Triple Drug Combination of Zidovudine, Efavirenz and Lamivudine Loaded Lactoferrin Nanoparticles: an Effective Nano First-Line Regimen for HIV Therapy. Pharm Res 34, 257–268 (2017). https://doi.org/10.1007/s11095-016-2048-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-016-2048-4

KEY WORDS

Navigation