Skip to main content
Log in

Reformulation of Fungizone by PEG-DSPE Micelles: Deaggregation and Detoxification of Amphotericin B

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Fungizone® (AmB-SD), amphotericin B solubilized by sodium deoxycholate, contains a highly aggregated form of the antifungal agent that causes dose-limiting renal toxicity. With the aim of reducing the formulation’s toxicity by co-delivering monomeric amphotericin B (AmB) and sodium supplementation, we deaggregated AmB-SD with FDA-approved excipient PEG-DSPE in 0.9% NaCl-USP. Herein, we describe a reformulated AmB-SD with PEG-DSPE micelles that results in a less toxic drug with maintained antifungal activity.

Methods

We compared the aggregation state and particle size of AmB-SD alone or combined with PEG-DSPE micelles. In vitro hemolytic activity and in vivo renal toxicity were measured to determine the toxicity of different formulations. In vitro antifungal assays were performed to determine differences in efficacy among formulations.

Results

PEG-DSPE micelles in saline deaggregated AmB-SD. Deaggregated AmB-SD exhibited significantly reduced in vitro and in vivo toxicity. In vitro antifungal studies showed no difference in minimum inhibitory and fungicidal concentrations of AmB-SD combined with PEG-DSPE relative to the drug alone.

Conclusions

Reformulation of AmB-SD with PEG-DSPE micelles in saline facilitates co-delivery of monomeric AmB and sodium supplementation, potentially reducing the dose-limiting nephrotoxicity of AmB-SD. Ease of preparation and commercially available components lead us to acknowledge its potential for clinical use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AmB:

Amphotericin B

AmB-SD:

Fungizone

BUN:

Blood urea nitrogen

CAC:

Critical aggregation concentration

MFC:

Minimum fungicidal concentration

MIC:

Minimum inhibitory concentration

SD:

Sodium deoxycholate

SDA:

Sabouraud dextrose agar

TL:

Total lysis

YPD:

Yeast peptone dextrose

References

  1. Gray KC, Palacios DS, Dailey I, Endo MM, Uno BE, Wilcock BC, et al. Amphotericin primarily kills yeast by simply binding ergosterol. Proc Natl Acad Sci U S A. 2012;109(7):2234–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Barwicz J, Christian S, Gruda I. Effects of the aggregation state of amphotericin-b on its toxicity to mice. Antimicrob Agents Chemother. 1992;36(10):2310–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ostrosky-Zeichner L, Marr KA, Rex JH, Cohen SH. Amphotericin B: time for a new “gold standard”. Clin Infect Dis. 2003;37(3):415–25.

    Article  CAS  PubMed  Google Scholar 

  4. Cleary JD, Rogers PD, Chapman SW. Variability in polyene content and cellular toxicity among deoxycholate amphotericin B formulations. Pharmacotherapy. 2003;23(5):572–8.

    Article  CAS  PubMed  Google Scholar 

  5. Bates DW, Su L, Yu DT, Chertow GM, Seger DL, Gomes DRJ, et al. Mortality and costs of acute renal failure associated with amphotericin B therapy. Clin Infect Dis. 2001;32(5):686–93.

    Article  CAS  PubMed  Google Scholar 

  6. Lamyfreund MT, Schreier S, Peitzsch RM, Reed WF. Characterization and time-dependence of amphotericin-B - deoxycholate aggregation by quasi-elastic light-scattering. J Pharm Sci. 1991;80(3):262–6.

    Article  CAS  Google Scholar 

  7. Inselmann G, Balaschke M, Heidemann HT. Enzymuria following amphotericin B application in the rat. Mycoses. 2003;46(5–6):169–73.

    Article  CAS  PubMed  Google Scholar 

  8. Torrado JJ, Espada R, Ballesteros MP, Torrado-Santiago S. Amphotericin B formulations and drug targeting. J Pharm Sci. 2008;97(7):2405–25.

    Article  CAS  PubMed  Google Scholar 

  9. Bekersky I, Fielding RM, Dressler DE, Lee JW, Buell DN, Walsh TJ. Pharmacokinetics, excretion, and mass balance of liposomal amphotericin B (AmBisome) and amphotericin B deoxycholate in humans. Antimicrob Agents Chemother. 2002;46(3):828–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cagnoni PJ, Walsh TJ, Prendergast MM, Bodensteiner D, Hiemenz S, Greenberg RN, et al. Pharmacoeconomic analysis of liposomal amphotericin B versus conventional amphotericin B in the empirical treatment of persistently febrile neutropenic patients. J Clin Oncol. 2000;18(12):2476–83.

    CAS  PubMed  Google Scholar 

  11. Falci DR, da Rosa FB, Pasqualotto AC. Comparison of nephrotoxicity associated to different lipid formulations of amphotericin B: a real-life study. Mycoses. 2015;58(2):104–12.

    Article  CAS  PubMed  Google Scholar 

  12. Espuelas MS, Legrand P, Cheron M, Barratt G, Puisieux F, Devissaguet JP, et al. Interaction of amphotericin B with polymeric colloids - A spectroscopic study. Colloids Surf B Biointerfaces. 1998;11(3):141–51.

    Article  CAS  Google Scholar 

  13. Kajtar M, Vikmon M, Morlin E, Szejtli J. Aggregation of amphotericin-b in the presence of gamma-cyclodextrin. Biopolymers. 1989;28(9):1585–96.

    Article  CAS  PubMed  Google Scholar 

  14. Tancrede P, Barwicz J, Jutras S, Gruda I. The effect of surfactants on the aggregation state of amphotericin-B. Biochim Biophys Acta. 1990;1030(2):289–95.

    Article  CAS  PubMed  Google Scholar 

  15. Gruda I, Dussault N. Effect of the aggregation state of amphotericin-b on its interaction with ergosterol. Biochem Cell Biol-Biochimie Et Biologie Cellulaire. 1988;66(3):177–83.

    Article  CAS  Google Scholar 

  16. Gruda I, Gauthier E, Elberg S, Brajtburg J, Medoff G. Effects of the detergent sucrose monolaurate on binding of amphotericin-B to sterols and its toxicity for cells. Biochem Biophys Res Commun. 1988;154(3):954–8.

    Article  CAS  PubMed  Google Scholar 

  17. Gruda I, Milette D, Brother M, Kobayashi GS, Medoff G, Brajtburg J. Structure-activity study of inhibition of amphotericin-B (Fungizone) binding to sterols, toxicity to cells, and lethality to mice by esters of sucrose. Antimicrob Agents Chemother. 1991;35(1):24–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bolard J, Legrand P, Heitz F, Cybulska B. One-sided action of amphotericin-B on cholesterol-containing membranes is determined by its self-association in the medium. Biochemistry. 1991;30(23):5707–15.

    Article  CAS  PubMed  Google Scholar 

  19. Legrand P, Romero EA, Cohen BE, Bolard J. Effects of aggregation and solvent on the toxicity of amphotericin-B to human erythrocytes. Antimicrob Agents Chemother. 1992;36(11):2518–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Branch RA. Prevention of amphotericin-B induced renal impairment - a review on the use of sodium supplementation. Arch Intern Med. 1988;148(11):2389–94.

    Article  CAS  PubMed  Google Scholar 

  21. Llanos A, Cieza J, Bernardo J, Echevarria J, Biaggioni I, Sabra R, et al. Effect of salt supplementation on amphotericin-b nephrotoxicity. Kidney Int. 1991;40(2):302–8.

    Article  CAS  PubMed  Google Scholar 

  22. Ohnishi A, Ohnishi T, Stevenhead W, Robinson RD, Glick A, Oday DM, et al. Sodium status influences chronic amphotericin-b nephrotoxicity in rats. Antimicrob Agents Chemother. 1989;33(8):1222–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mayer J, Doubek M, Doubek J, Horky D, Scheer P, Stepanek M. Reduced nephrotoxicity of conventional amphotericin B therapy after minimal nephroprotective measures: animal experiments and clinical study. J Infect Dis. 2002;186(3):379–88.

    Article  CAS  PubMed  Google Scholar 

  24. Sawaya BP, Briggs JP, Schnermann J. Amphotericin-B nephrotoxicity - the adverse consequences of altered membrane-properties. J Am Soc Nephrol. 1995;6(2):154–64.

    CAS  PubMed  Google Scholar 

  25. Carlson MA, Condon RE. Nephrotoxicity of amphotericin-B. J Am Coll Surg. 1994;179(3):361–81.

    CAS  PubMed  Google Scholar 

  26. Adams ML, Andes DR, Kwon GS. Amphotericin B encapsulated in micelles based on poly(ethylene oxide)-block-poly(L-amino acid) derivatives exerts reduced in vitro hemolysis but maintains potent in vivo antifungal activity. Biomacromolecules. 2003;4(3):750–7.

    Article  CAS  PubMed  Google Scholar 

  27. Diezi TA, Kwon G. Amphotericin B/sterol co-loaded PEG-phospholipid micelles: effects of sterols on aggregation state and hemolytic activity of amphotericin B. Pharm Res. 2012;29(7):1737–44.

    Article  CAS  PubMed  Google Scholar 

  28. Yu BG, Okano T, Kataoka K, Sardari S, Kwon GS. In vitro dissociation of antifungal efficacy and toxicity for amphotericin B-loaded poly(ethylene oxide)-block-poly( beta-benzyl-L-aspartate) micelles. J Control Release. 1998;56(1–3):285–91.

    Article  CAS  PubMed  Google Scholar 

  29. Lavasanifar A, Samuel J, Sattari S, Kwon GS. Block copolymer micelles for the encapsulation and delivery of amphotericin B. Pharm Res. 2002;19(4):418–22.

    Article  CAS  PubMed  Google Scholar 

  30. Diezi TA, Takemoto JK, Davies NM, Kwon GS. Pharmacokinetics and nephrotoxicity of amphotericin B-incorporated poly(ethylene glycol)-block-poly(N-hexyl stearate l-aspartamide) micelles. J Pharm Sci. 2011;100(6):2064–70.

    Article  CAS  PubMed  Google Scholar 

  31. Bolard J, Seigneuret M, Boudet G. Interaction between phospholipid-bilayer membranes and the polyene antibiotic amphotericin-b - lipid state and cholesterol content dependence. Biochim Biophys Acta. 1980;599(1):280–93.

    Article  CAS  PubMed  Google Scholar 

  32. Aramwit P, Yu BG, Lavasanifar A, Samuel J, Kwon GS. The effect of serum albumin on the aggregation state and toxicity of amphotericin B. J Pharm Sci. 2000;89(12):1589–93.

    Article  CAS  PubMed  Google Scholar 

  33. Johnson EM, Ojwang JO, Szekely A, Wallace TL, Warnock DW. Comparison of in vitro antifungal activities of free and liposome-encapsulated nystatin with those of four amphotericin B formulations. Antimicrob Agents Chemother. 1998;42(6):1412–6.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

This work was supported by the NIH (R01 AI-43346). Special thanks to Dr. Tim Bugni for kindly providing C. albicans strain K1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glen S. Kwon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alvarez, C., Shin, D.H. & Kwon, G.S. Reformulation of Fungizone by PEG-DSPE Micelles: Deaggregation and Detoxification of Amphotericin B. Pharm Res 33, 2098–2106 (2016). https://doi.org/10.1007/s11095-016-1948-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-016-1948-7

KEY WORDS

Navigation