Skip to main content

Advertisement

Log in

Histological Quantification of Gene Silencing by Intratracheal Administration of Dry Powdered Small-Interfering RNA/Chitosan Complexes in the Murine Lung

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

The use of small-interfering RNA (siRNA) as an inhalation therapy has recently received much attention. Some reports have confirmed the suppression of gene expression in whole lungs following intratracheal administration of dry powdered siRNA; however, the anatomical location in the lung where gene silencing occurs has not been precisely identified. Here, we aimed to histologically evaluate gene silencing efficacy in murine lungs by intratracheal administration of an siRNA/chitosan complex as a dry powder.

Methods

Enhanced green fluorescence protein (EGFP)-specific siRNA (EGFP-siRNA)/chitosan powder was prepared and administered intratracheally to EGFP transgenic mice or mice carrying metastatic lung tumors consisting of Lewis lung carcinoma (LLC) cells stably expressing EGFP (EGFP-LLCs). Thereafter, green fluorescence intensities were quantified in the airways, parenchyma, and lung tumors.

Results

Intratracheal administration of the EGFP-siRNA/chitosan powder suppressed EGFP expression in the bronchi, bronchioles, and alveolar walls of EGFP transgenic mice. Additionally, EGFP-siRNA/chitosan effectively silenced EGFP expression in lung tumors consisting of EGFP-LLC cells.

Conclusions

Pulmonary administration of siRNA/chitosan powder suppressed gene expression throughout the lung and in lung tumors. Therefore, this may become a powerful strategy to target genes expressed in a wide range of respiratory diseases involving the airways, parenchyma, and lung tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

LLC:

Lewis lung carcinoma

EGFP-LLC:

Lewis lung carcinoma cells expressing EGFP

REFERENCES

  1. Fire A, Xu S, Montgomery MK, Kostas S, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998;391:806–11.

    Article  CAS  PubMed  Google Scholar 

  2. Lam JK, Liang W, Chan HK. Pulmonary delivery of therapeutic siRNA. Adv Drug Deliv Rev. 2012;64:1–15.

    Article  CAS  PubMed  Google Scholar 

  3. Okamoto H, Shiraki K, Yasuda R, Danjo K, Watanabe Y. Chitosan-interferon-β gene complex powder for inhalation treatment of lung metastasis in mice. J Control Release. 2011;150:187–95.

    Article  CAS  PubMed  Google Scholar 

  4. Mizuno T, Mohri K, Nasu S, Danjo K, Okamoto H. Dual imaging of pulmonary delivery and gene expression of dry powder inhalant by fluorescence and bioluminescence. J Control Release. 2009;134:149–54.

    Article  CAS  PubMed  Google Scholar 

  5. Mohri K, Okuda T, Mori A, Danjo K, Okamoto H. Optimized pulmonary gene transfection in mice by spray-freeze dried powder inhalation. J Control Release. 2010;144:221–6.

    Article  CAS  PubMed  Google Scholar 

  6. Okamoto H, Danjo K. Application of supercritical fluid to preparation of powders of high-molecular weight drugs for inhalation. Adv Drug Deliv Rev. 2008;60:433–46.

    Article  CAS  PubMed  Google Scholar 

  7. Todo H, Iida K, Okamoto H, Danjo K. Improvement of insulin absorption from intratracheally administrated dry powder prepared by supercritical carbon dioxide process. J Pharm Sci. 2003;21:2475–86.

    Article  Google Scholar 

  8. Jovanović N, Bouchard A, Hofland GW, Witkamp GJ, Crommelin DJ, Jiskoot W. Stabilization of proteins in dry powder formulations using supercritical fluid technology. Pharm Res. 2004;21:1955–69.

    Article  PubMed  Google Scholar 

  9. Okamoto H, Nishida S, Todo H, Sakakura Y, Iida K, Danjo K. Pulmonary gene delivery by chitosan-pDNA complex powder prepared with supercritical carbon dioxide. J Pharm Sci. 2003;92:371–80.

    Article  CAS  PubMed  Google Scholar 

  10. Okuda T, Kito D, Oiwa A, Fukushima M, Hira D, Okamoto H. Gene silencing in a mouse lung metastasis model by an inhalable dry small interfering RNA powder prepared using the supercritical carbon dioxide technique. Biol Pharm Bull. 2013;36:1183–91.

    Article  CAS  PubMed  Google Scholar 

  11. Luo Y, Zhai X, Ma C, Sun P, Fu Z, Liu W, et al. An inhalable β2-adrenoceptor ligand-directed guanidinylated chitosan carrier for targeted delivery of siRNA to lung. J Control Release. 2012;162:28–36.

    Article  CAS  PubMed  Google Scholar 

  12. Merkel OM, Beyerle A, Librizzi D, Pfestroff A, Behr TM, Sproat B, et al. Nonviral siRNA delivery to the lung: investigation of PEG-PEI polyplexes and their in vivo performance. Mol Pharm. 2009;6:1246–60.

    Article  CAS  PubMed  Google Scholar 

  13. Perl M, Chung CS, Lomas-Neira J, Rachel TM, Biffl WL, Cioffi WG, et al. Silencing of Fas, but not caspase-8, in lung epithelial cells ameliorates pulmonary apoptosis, inflammation, and neutrophil influx after hemorrhagic shock and sepsis. Am J Pathol. 2005;167:1545–59.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Howard KA, Rahbek UL, Liu X, Damgaard CK, Glud SZ, Andersen MØ, et al. RNA interference in vitro and in vivo using a novel chitosan/siRNA nanoparticle system. Mol Ther. 2006;14:476–84.

    Article  CAS  PubMed  Google Scholar 

  15. Dong XS, Hu XB, Liu W, Sun YQ, Liu Z. Effects of RNA interference-induced Smad3 gene silencing on pulmonary fibrosis caused by paraquat in mice. Exp Biol Med. 2012;237:548–55.

    Article  CAS  Google Scholar 

  16. Wu CJ, Huang WC, Chen LC, Shen CR, Kuo ML. Pseudotyped adeno-associated virus 2/9-delivered CCL11 shRNA alleviates lung inflammation in an allergen-sensitized mouse model. Hum Gene Ther. 2012;23:1156–65.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Wu SY, McMillan NA. Lipidic systems for in vivo siRNA delivery. AAPS J. 2009;11:639–52.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Dokka S, Toledo D, Shi XG, Castranova V, Rojanasakul Y. Oxygen radical-mediated pulmonary toxicity induced by some cationic liposomes. Pharm Res. 2000;17:521–5.

    Article  CAS  PubMed  Google Scholar 

  19. Moschos SA, Jones SW, Perry MM, Williams AE, Erjefalt JS, Turner JJ, et al. Lung delivery studies using siRNA conjugated to TAT(48-60) and penetratin reveal peptide induced reduction in gene expression and induction of innate immunity. Bioconjug Chem. 2007;18:1450–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Wang JC, Lai SL, Guo XJ, Zhang XF, de Crombrugghe B, Sonnylal S, et al. Attenuation of fibrosis in vitro and in vivo with SPARC siRNA. Arthritis Res Ther. 2010;12:R60.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Bitko V, Musiyenko A, Shulyayeva O, Barik S. Inhibition of respiratory viruses by nasally administered siRNA. Nat Med. 2005;11:50–5.

    Article  CAS  PubMed  Google Scholar 

  22. Merkel OM, Beyerle A, Librizzi D, Pfestroff A, Behr TM, Sproat B, et al. Nonviral siRNA delivery to the lung: investigation of PEG-PEI polyplexes and their in vivo performance. Mol Pharm. 2009;6:1246–60.

    Article  CAS  PubMed  Google Scholar 

  23. Beyerle A, Braun A, Merkel O, Koch F, Kissel T, Stoeger T. Comparative in vivo study of poly(ethylene imine)/siRNA complexes for pulmonary delivery in mice. J Control Release. 2011;151:51–6.

    Article  CAS  PubMed  Google Scholar 

  24. Jiang HL, Xu CX, Kim YK, Arote R, Jere D, Lim HT, et al. The suppression of lung tumorigenesis by aerosol-delivered folate-chitosan-graft-polyethylenimine/Akt1 shRNA complexes through the Akt signaling pathway. Biomaterials. 2009;30:5844–52.

    Article  CAS  PubMed  Google Scholar 

  25. Mao S, Sun W, Kisel T. Chitosan-based formulations for delivery of DNA and siRNA. Adv Drug Deliv Rev. 2009;62:12–27.

    Article  PubMed  Google Scholar 

  26. Lee MK, Chun SK, Choi WJ, Kim JK, Choi SH, Kim A, et al. The use of chitosan as a condensing agent to enhance emulsion-mediated gene transfer. Biomaterials. 2005;26:2147–56.

    Article  CAS  PubMed  Google Scholar 

  27. Rudzinski WE, Aminabhavi TM. Chitosan as a carrier for targeted delivery of small interfering RNA. Int J Pharm. 2010;399:1–11.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

This work was supported, in part, by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noboru Hattori.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ihara, D., Hattori, N., Horimasu, Y. et al. Histological Quantification of Gene Silencing by Intratracheal Administration of Dry Powdered Small-Interfering RNA/Chitosan Complexes in the Murine Lung. Pharm Res 32, 3877–3885 (2015). https://doi.org/10.1007/s11095-015-1747-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-015-1747-6

KEY WORDS

Navigation