Skip to main content

Advertisement

Log in

In vivo and In vitro Evaluations of Intestinal Gabapentin Absorption: Effect of Dose and Inhibitors on Carrier-Mediated Transport

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Gabapentin exhibits saturable absorption kinetics, however, it remains unclear which transporters that are involved in the intestinal transport of gabapentin. Thus, the aim of the current study was to explore the mechanistic influence of transporters on the intestinal absorption of gabapentin by both in vivo and in vitro investigations

Methods

Pharmacokinetic parameters were determined following a range of intravenous (5–100 mg/kg) and oral doses (10–200 mg/kg) in rats. Transepithelial transport (50 μM–50 mM) and apical uptake of gabapentin (0.01–50 mM) were investigated in Caco-2 cells. The effect of co-application of the LAT-inhibitor, BCH, and the b0,+-substrate, L-lysine, on intestinal transport of gabapentin was evaluated in vivo and in vitro.

Results

Gabapentin showed dose-dependent oral absorption kinetics and dose-independent disposition kinetics. Co-application of BCH inhibited intestinal absorption in vivo and apical uptake in vitro, whereas no effect was observed following co-application of L-lysine.

Conclusions

The present study shows for the first time that BCH was capable of inhibiting intestinal absorption of gabapentin in vivo. Furthermore, in Caco-2 cell experiments BCH inhibited apical uptake of gabapentin. These findings may imply that a BCH-sensitive transport-system was involved in the apical and possibly the basolateral transport of gabapentin across the intestinal wall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

GBP:

Gabapentin

BBB:

Blood–brain barrier

Leu:

L-Leucine

Phe:

L-Phenylalanine

Lys:

L-Lysine

Arg:

L-Arginine

CssC:

L-Cystine

BCH:

2-amino-2-norbornanecarboxylic acid

(A-B):

Apical to basolateral

(B-A):

Basolateral to apical

References

  1. Bryans JS, Wustrow DJ. 3-Substituted GABA analogs with central nervous system activity: a review. Med Res Rev. 1999;19:149–77.

    Article  CAS  PubMed  Google Scholar 

  2. Taylor CP, Gee NS, Su TZ, Kocsis JD, Welty DF, Brown JP, et al. A summary of mechanistic hypotheses of gabapentin pharmacology. Epilepsy Res. 1998;29:233–49.

    Article  CAS  PubMed  Google Scholar 

  3. Farach FJ, Pruitt LD, Jun JJ, Jerud AB, Zoellner LA, Roy-Byrne PP. Pharmacological treatment of anxiety disorders: current treatments and future directions. J Anxiety Disord. 2012;26:833–43.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Kukkar A, Bali A, Singh N, Jaggi AS. Implications and mechanism of action of gabapentin in neuropathic pain. Arch Pharm Res. 2013;36:237–51.

    Article  CAS  PubMed  Google Scholar 

  5. Somerville ER, Michell AW. Gabapentin. In: Shorvon S, Perucca E, Engel J, editors. The treatment of epilepsy. Oxford: Wiley-Blackwell; 2009. p. 519–26.

    Chapter  Google Scholar 

  6. Avdeef A. Absorption and drug development: solubility, permeability, and charge state. Hoboken: Wiley; 2003.

    Book  Google Scholar 

  7. Stewart BH, Kugler AR, Thompson PR, Bockbrader HN. A saturable transport mechanism in the intestinal absorption of gabapentin is the underlying cause of the lack of proportionality between increasing dose and drug levels in plasma. Pharm Res. 1993;10:276–81.

    Article  CAS  PubMed  Google Scholar 

  8. Madan J, Chawla G, Arora V, Malik R, Bansal AK. Unbiased membrane permeability parameters for gabapentin using boundary layer approach. AAPS J. 2005;7:224–30.

    Article  Google Scholar 

  9. Gidal BE, DeCerce J, Bockbrader HN, Gonzalez J, Kruger S, Pitterle ME, et al. Gabapentin bioavailability: effect of dose and frequency of administration in adult patients with epilepsy. Epilepsy Res. 1998;31:91–9.

    Article  CAS  PubMed  Google Scholar 

  10. Moore RA, Wiffen PJ, Derry S, McQuay HJ. Gabapentin for chronic neuropathic pain and fibromyalgia in adults. Cochrane Database Syst Rev. 2011:1–91.

  11. Luer MS, Hamani C, Dujovny M, Gidal B, Cwik M, Deyo K, et al. Saturable transport of gabapentin at the blood–brain barrier. Neurol Res. 1999;21:559–62.

    CAS  PubMed  Google Scholar 

  12. Radulovic LL, Türck D, von Hodenberg A, Vollmer KO, McNally WP, DeHart PD, et al. Disposition of gabapentin (neurontin) in mice, rats, dogs, and monkeys. Drug Metab Dispos. 1995;23:441–8.

    CAS  PubMed  Google Scholar 

  13. Vollmer KO, von Hodenberg A, Kölle EU. Pharmacokinetics and metabolism of gabapentin in rat, dog and man. Arzneimittelforschung. 1986;36:830–9.

    CAS  PubMed  Google Scholar 

  14. Cundy KC, Annamalai T, Bu L, De Vera J, Estrela J, Luo W, et al. XP13512 [(±)-1-([(α-Isobutanoyloxyethoxy)carbonyl] aminomethyl)-1-cyclohexane acetic acid], a novel gabapentin prodrug: II. Improved oral bioavailability, dose proportionality, and colonic absorption compared with gabapentin in rats and monkeys. J Pharmacol Exp Ther. 2004;311:324–33.

    Article  CAS  PubMed  Google Scholar 

  15. Urban TJ, Brown C, Castro RA, Shah N, Mercer R, Huang Y, et al. Effects of genetic variation in the novel organic cation transporter, OCTN1, on the renal clearance of gabapentin. Clin Pharmacol Ther. 2008;83:416–21.

    Article  CAS  PubMed  Google Scholar 

  16. Su TZ, Feng MR, Weber ML. Mediation of highly concentrative uptake of pregabalin by L-Type amino acid transport in chinese hamster ovary and Caco-2 cells. J Pharmacol Exp Ther. 2005;313:1406–15.

    Article  CAS  PubMed  Google Scholar 

  17. Naoki S, Nakanishi K, Wada M, Fujita T. Uptake and transport characteristics of gabapentin in human intestinal cell line caco-2. Drug Metab Rev. 2007;39:288–9.

    Google Scholar 

  18. Nguyen TV, Smith DE, Fleisher D. PEPT1 enhances the uptake of gabapentin via trans-stimulation of b0,+ exchange. Pharm Res. 2007;24:353–60.

    Article  CAS  PubMed  Google Scholar 

  19. Piyapolrungroj N, Li C, Bockbrader H, Liu G, Fleisher D. Mucosal uptake of gabapentin (neurontin) vs. pregabalin in the small intestine. Pharm Res. 2001;18:1126–30.

    Article  CAS  PubMed  Google Scholar 

  20. Fotiadis D, Kanai Y, Palacín M. The SLC3 and SLC7 families of amino acid transporters. Mol Aspects Med. 2013;34:139–58.

    Article  CAS  PubMed  Google Scholar 

  21. Rossier G, Meier C, Bauch C, Summa V, Sordat B, Verrey F, et al. LAT2, a new basolateral 4F2hc/CD98-associated amino acid transporter of kidney and intestine. J Biol Chem. 1999;274:34948–54.

    Article  CAS  PubMed  Google Scholar 

  22. Dave MH, Schulz N, Zecevic M, Wagner CA, Verrey F. Expression of heteromeric amino acid transporters along the murine intestine. J Physiol. 2004;558:597–610.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Larsen M, Larsen BB, Frølund B, Nielsen CU. Transport of amino acids and GABA analogues via the human proton-coupled amino acid transporter, hPAT1: Characterization of conditions for affinity and transport experiments in Caco-2 cells. Eur J Pharm Sci. 2008;35:86–95.

    Article  CAS  PubMed  Google Scholar 

  24. Frølund S, Langthaler L, Kall M, Holm R, Nielsen CU. Intestinal drug transport via the proton-coupled amino acid transporter, PAT1 (SLC36A1), is inhibited by Gly-Xaa dipeptides. Mol Pharm. 2012;9:2761–9.

    Article  PubMed  Google Scholar 

  25. Nielsen CU, Amstrup J, Steffansen B, Frokjaer S, Brodin B. Epidermal growth factor inhibits glycylsarcosine transport and hPepT1 expression in a human intestinal cell line. Am J Physiol Gastrointest Liver Physiol. 2001;281:G191–G9.

    CAS  PubMed  Google Scholar 

  26. Frølund S, Marquez OC, Larsen M, Brodin B, Nielsen CU. delta-Aminolevulinic acid is a substrate for the amino acid transporter SLC36A1 (hPAT1). Br J Pharmacol. 2010;159:1339–53.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Park S, Kim JK, Kim IJ, Choi B, Jung KY, Lee S, et al. Reabsorption of neutral amino acids mediated by amino acid transporter LAT2 and TAT1 in the basolateral membrane of proximal tubule. Arch Pharm Res. 2005;28:421–32.

    Article  CAS  PubMed  Google Scholar 

  28. Bauch C, Forster N, Loffing-Cueni D, Summa V, Verrey F. Functional cooperation of epithelial heteromeric amino acid transporters expressed in Madin-Darby canine kidney cells. J Biol Chem. 2003;278:1316–22.

    Article  CAS  PubMed  Google Scholar 

  29. Mclean MJ. Gabapentin: chemistry, absorption, distribution, and elimination. In: Levy R, Mattson R, Meldrum B, editors. Antiepileptic drugs. New York: Raven; 1995. p. 843–9.

    Google Scholar 

  30. Jezyk N, Li C, Stewart BH, Wu X, Bockbrader HN, Fleisher D. Transport of pregabalin in rat intestine and Caco-2 monolayers. Pharm Res. 1999;16:519–26.

    Article  CAS  PubMed  Google Scholar 

  31. Cundy KC, Branch R, Chernov-Rogan T, Dias T, Estrada T, Hold K, et al. XP13512 [(±)-1-([(α-Isobutanoyloxyethoxy)carbonyl] aminomethyl)-1-cyclohexane acetic acid], a novel gabapentin prodrug: I. Design, synthesis, enzymatic conversion to gabapentin, and transport by intestinal solute transporters. J Pharmacol Exp Ther. 2004;311:315–23.

    Article  CAS  PubMed  Google Scholar 

  32. Mailliard ME, Stevens BR, Mann GE. Amino acid transport by small intestinal, hepatic, and pancreatic epithelia. Gastroenterology. 1995;108:888–910.

    Article  CAS  PubMed  Google Scholar 

  33. Kim CS, Cho S-H, Chun HS, Lee S-Y, Endou H, Kanai Y, et al. BCH, an Inhibitor of system L amino acid transporters, induces apoptosis in cancer cells. Biol Pharm Bull. 2008;31:1096–100.

    Article  CAS  PubMed  Google Scholar 

  34. Fraga S, Pinho MJ, Soares-da-Silva P. Expression of LAT1 and LAT2 amino acid transporters in human and rat intestinal epithelial cells. Amino Acids. 2005;29:229–33.

    Article  CAS  PubMed  Google Scholar 

  35. Fraga S, Serrão MP, Soares-da-Silva P. l-Type amino acid transporters in two intestinal epithelial cell lines function as exchangers with neutral amino acids. J Nutr. 2002;132:733–8.

    CAS  PubMed  Google Scholar 

  36. Gidal BE, Radulovic LL, Kruger S, Rutecki P, Pitterle M, Bockbrader HN. Inter- and intra-subject variability in gabapentin absorption and absolute bioavailability. Epilepsy Res. 2000;40:123–7.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

The personnel at the animal facilities at H. Lundbeck A/S are acknowledged and appreciated for their skillful and flexible handling of the animal study. The cell culture facility at Department of Pharmacy is acknowledged for culturing cells.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to René Holm.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 418 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Larsen, M.S., Frølund, S., Nøhr, M.K. et al. In vivo and In vitro Evaluations of Intestinal Gabapentin Absorption: Effect of Dose and Inhibitors on Carrier-Mediated Transport. Pharm Res 32, 898–909 (2015). https://doi.org/10.1007/s11095-014-1505-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-014-1505-1

KEY WORDS

Navigation