Skip to main content
Log in

Metal-Mediated Protein Oxidation: Applications of a Modified ELISA-Based Carbonyl Detection Assay for Complex Proteins

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

Therapeutic proteins are prone to oxidative modification during manufacturing, processing, and storage that may lead to degradation, aggregation, and immunogenicity. Protein carbonylation is an irreversible oxidative modification and has been identified as a hallmark of severe oxidative stress but not extensively studied for its impact on the stability and activity of therapeutic proteins.

Methods

We describe the application of a modified ELISA-based method to quantify global levels of carbonyl modification of complex proteins. We investigated protein oxidation of large protein molecules (transferrin, rabbit IgG, or β-glucosidase) and complex protein samples (human plasma) that were either stored in different buffer formulations, with varying amounts of divalent iron, or under different storage temperatures to determine the impact of different physicochemical stresses on carbonyl modifications.

Results

The modified ELISA allows for sensitive and specific carbonyl quantification with measurements that closely match those determined with the conventional spectrophotometric method. The method was useful for complex protein mixtures such as cell lysates without the need for additional procedures to remove DNA and RNA. Our findings demonstrate significant oxidative modification of each of the proteins stored in commonly used buffers and excipients at 37°C, 23°C, and 4°C. The carbonyl levels were further exacerbated with addition of trace amounts of Fe2+. We also measured the extent of protein aggregation under oxidizing conditions.

Conclusions

Collectively, our results indicate the importance of better characterizing carbonyl modification of proteins during their storage and use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

REFERENCES

  1. Walsh G, Jefferis R. Post-translational modifications in the context of therapeutic proteins. Nat Biotechnol. 2006;24(10):1241–52.

    Article  CAS  PubMed  Google Scholar 

  2. Mann M, Jensen ON. Proteomic analysis of post-translational modifications. Nat Biotechnol. 2003;21(3):255–61.

    Article  CAS  PubMed  Google Scholar 

  3. Dean RT, Fu S, Stocker R, Davies MJ. Biochemistry and pathology of radical-mediated protein oxidation. Biochem J. 1997;324(Pt 1):1–18.

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Shacter E. Quantification and significance of protein oxidation in biological samples. Drug Metab Rev. 2000;32(3–4):307–26.

    Article  CAS  PubMed  Google Scholar 

  5. Cecarini V, Gee J, Fioretti E, Amici M, Angeletti M, Eleuteri AM, et al. Protein oxidation and cellular homeostasis: emphasis on metabolism. Biochim Biophys Acta. 2007;1773(2):93–104.

    Article  CAS  PubMed  Google Scholar 

  6. Torosantucci R, Schoneich C, Jiskoot W. Oxidation of therapeutic proteins and peptides: structural and biological consequences. Pharm Res. 2014;31(3):541–53.

    Article  CAS  PubMed  Google Scholar 

  7. Sola RJ, Griebenow K. Effects of glycosylation on the stability of protein pharmaceuticals. J Pharm Sci. 2009;98(4):1223–45.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Jenkins N, Murphy L, Tyther R. Post-translational modifications of recombinant proteins: significance for biopharmaceuticals. Mol Biotechnol. 2008;39(2):113–8.

    Article  CAS  PubMed  Google Scholar 

  9. Tovey MG, Legrand J, Lallemand C. Overcoming immunogenicity associated with the use of biopharmaceuticals. Expert Rev Clin Pharmacol. 2011;4(5):623–31.

    Article  CAS  PubMed  Google Scholar 

  10. Torosantucci R, Sharov VS, van Beers M, Brinks V, Schoneich C, Jiskoot W. Identification of oxidation sites and covalent cross-links in metal catalyzed oxidized interferon Beta-1a: potential implications for protein aggregation and immunogenicity. Mol Pharm. 2013;10(6):2311–22.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Purohit VS, Middaugh CR, Balasubramanian SV. Influence of aggregation on immunogenicity of recombinant human Factor VIII in hemophilia A mice. J Pharm Sci. 2006;95(2):358–71.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Kappos L, Clanet M, Sandberg-Wollheim M, Radue EW, Hartung HP, Hohlfeld R, et al. Neutralizing antibodies and efficacy of interferon beta-1a: a 4-year controlled study. Neurology. 2005;65(1):40–7.

    Article  CAS  PubMed  Google Scholar 

  13. Casadevall N, Nataf J, Viron B, Kolta A, Kiladjian J-J, Martin-Dupont P, et al. Pure red-cell aplasia and antierythropoietin antibodies in patients treated with recombinant erythropoietin. N Engl J Med. 2002;346(7):469–75.

    Article  CAS  PubMed  Google Scholar 

  14. Reipert BM, van Helden PMW, Schwarz H-P, Hausl C. Mechanisms of action of immune tolerance induction against factor VIII in patients with congenital haemophilia A and factor VIII inhibitors. Br J Haematol. 2007;136(1):12–25.

    Article  CAS  PubMed  Google Scholar 

  15. Berlett BS, Stadtman ER. Protein oxidation in aging, disease, and oxidative stress. J Biol Chem. 1997;272(33):20313–6.

    Article  CAS  PubMed  Google Scholar 

  16. Lu HS, Fausset PR, Narhi LO, Horan T, Shinagawa K, Shimamoto G, et al. Chemical modification and site-directed mutagenesis of methionine residues in recombinant human granulocyte colony-stimulating factor: effect on stability and biological activity. Arch Biochem Biophys. 1999;362(1):1–11.

    Article  CAS  PubMed  Google Scholar 

  17. Pan B, Abel J, Ricci MS, Brems DN, Wang DIC, Trout BL. Comparative oxidation studies of methionine residues reflect a structural effect on chemical kinetics in rhG-CSF. Biochemistry. 2006;45(51):15430–43.

    Article  CAS  PubMed  Google Scholar 

  18. Mulinacci F, Capelle MAH, Gurny R, Drake AF, Arvinte T. Stability of human growth hormone: influence of methionine oxidation on thermal folding. J Pharm Sci. 2011;100(2):451–63.

    Article  CAS  PubMed  Google Scholar 

  19. Yin J, Chu J-W, Ricci MS, Brems DN, Wang DIC, Trout BL. Effects of excipients on the hydrogen peroxide-induced oxidation of methionine residues in granulocyte colony-stimulating factor. Pharm Res. 2005;22(1):141–7.

    Article  CAS  PubMed  Google Scholar 

  20. Stadtman ER. Metal ion-catalyzed oxidation of proteins: biochemical mechanism and biological consequences. Free Radic Biol Med. 1990;9(4):315–25.

    Article  CAS  PubMed  Google Scholar 

  21. Xu G, Chance MR. Hydroxyl radical-mediated modification of proteins as probes for structural proteomics. Chem Rev. 2007;107(8):3514–43.

    Article  CAS  PubMed  Google Scholar 

  22. Aryal B, Jeong J, Rao VA. Doxorubicin-induced carbonylation and degradation of cardiac myosin binding protein C promote cardiotoxicity. Proc Natl Acad Sci U S A. 2014;111(5):2011–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Grimsrud PA, Xie H, Griffin TJ, Bernlohr DA. Oxidative stress and covalent modification of protein with bioactive aldehydes. J Biol Chem. 2008;283(32):21837–41.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Castro-Acosta RM, Rodriguez-Limas WA, Valderrama B, Ramirez OT, Palomares LA. Effect of metal catalyzed oxidation in recombinant viral protein assemblies. Microb Cell Factories. 2014;13(1):25.

    Article  Google Scholar 

  25. Shao CH, Capek HL, Patel KP, Wang M, Tang K, DeSouza C, et al. Carbonylation contributes to SERCA2a activity loss and diastolic dysfunction in a rat model of type 1 diabetes. Diabetes. 2011;60(3):947–59.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Levine RL, Williams JA, Stadtman ER, Shacter E. Carbonyl assays for determination of oxidatively modified proteins. Methods Enzymol. 1994;233:346–57.

    Article  CAS  PubMed  Google Scholar 

  27. Reznick AZ, Packer L. Oxidative damage to proteins: spectrophotometric method for carbonyl assay. Methods Enzymol. 1994;233:357–63.

    Article  CAS  PubMed  Google Scholar 

  28. Kouno Y, Anraku M, Yamasaki K, Okayama Y, Iohara D, Ishima Y, et al. N-acetyl-l-methionine is a superior protectant of human serum albumin against photo-oxidation and reactive oxygen species compared to N-acetyl-l-tryptophan. Biochim Biophys Acta (BBA) Gen Subj. 2014;1840:2806–12.

    Article  CAS  Google Scholar 

  29. Madian AG, Diaz-Maldonado N, Gao Q, Regnier FE. Oxidative stress induced carbonylation in human plasma. J Proteome. 2011;74(11):2395–416.

    Article  CAS  Google Scholar 

  30. Dalle-Donne I, Rossi R, Giustarini D, Milzani A, Colombo R. Protein carbonyl groups as biomarkers of oxidative stress. Clin Chim Acta. 2003;329(1–2):23–38.

    Article  CAS  PubMed  Google Scholar 

  31. Shacter E, Williams JA, Lim M, Levine RL. Differential susceptibility of plasma proteins to oxidative modification: examination by western blot immunoassay. Free Radic Biol Med. 1994;17(5):429–37.

    Article  CAS  PubMed  Google Scholar 

  32. Buss H, Chan TP, Sluis KB, Domigan NM, Winterbourn CC. Protein carbonyl measurement by a sensitive ELISA method. Free Radic Biol Med. 1997;23(3):361–6.

    Article  CAS  PubMed  Google Scholar 

  33. Winterbourn CC, Buss IH. Protein carbonyl measurement by enzyme-linked immunosorbent assay. Methods Enzymol. 1999;300:106–11.

    Article  CAS  PubMed  Google Scholar 

  34. Levine RL, Garland D, Oliver CN, Amici A, Climent I, Lenz AG, et al. Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol. 1990;186:464–78.

    Article  CAS  PubMed  Google Scholar 

  35. Luo S, Wehr NB. Protein carbonylation: avoiding pitfalls in the 2,4-dinitrophenylhydrazine assay. Redox Rep. 2009;14(4):159–66.

    Article  CAS  PubMed  Google Scholar 

  36. Zhou S, Schoneich C, Singh SK. Biologics formulation factors affecting metal leachables from stainless steel. AAPS PharmSciTech. 2011;12(1):411–21.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Ha E, Wang W, Wang YJ. Peroxide formation in polysorbate 80 and protein stability. J Pharm Sci. 2002;91(10):2252–64.

    Article  CAS  PubMed  Google Scholar 

  38. Zhao F, Ghezzo-Schoneich E, Aced GI, Hong J, Milby T, Schoneich C. Metal-catalyzed oxidation of histidine in human growth hormone. Mechanism, isotope effects, and inhibition by a mild denaturing alcohol. J Biol Chem. 1997;272(14):9019–29.

    Article  CAS  PubMed  Google Scholar 

  39. Hovorka SW, Hong J, Cleland JL, Schoneich C. Metal-catalyzed oxidation of human growth hormone: modulation by solvent-induced changes of protein conformation. J Pharm Sci. 2001;90(1):58–69.

    Article  CAS  PubMed  Google Scholar 

  40. Jorgensen L, Hostrup S, Moeller EH, Grohganz H. Recent trends in stabilising peptides and proteins in pharmaceutical formulation—considerations in the choice of excipients. Expert Opin Drug Deliv. 2009;6(11):1219–30.

    Article  CAS  PubMed  Google Scholar 

  41. Shen D, Coleman J, Chan E, Nicholson TP, Dai L, Sheppard PW, et al. Novel cell- and tissue-based assays for detecting misfolded and aggregated protein accumulation within aggresomes and inclusion bodies. Cell Biochem Biophys. 2011;60(3):173–85.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Lam XM, Lai WG, Chan EK, Ling V, Hsu CC. Site-specific tryptophan oxidation induced by autocatalytic reaction of polysorbate 20 in protein formulation. Pharm Res. 2011;28(10):2543–55.

    Article  CAS  PubMed  Google Scholar 

  43. Lam XM, Yang JY, Cleland JL. Antioxidants for prevention of methionine oxidation in recombinant monoclonal antibody HER2. J Pharm Sci. 1997;86(11):1250–5.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

This research was supported by the CDER Critical Path Initiative. We thank Dr. Joseph Kotarek (FDA) for help in analyzing protein aggregates. We would like to thank Elliot Rosen (FDA), Dr. Shen Luo (FDA), Dr. Nancy B. Wehr (NIH/NHLBI) and Dr. Rodney L. Levine (NIH/NHLBI) for critical reading of the manuscript or suggestions. The authors have no competing financial interests to disclose. The views expressed in this article are those of the authors and do not necessarily reflect the official policy or position of the U.S. Food and Drug Administration and the Department of Health and Human Services, nor does mention of trade names, commercial products, or organizations imply endorsement by the U.S. Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Ashutosh Rao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure S1

Validation of DNPH removal step for carbonyl content determination. Following DNP derivatization, free unbound DNPH was removed either by ethanol/ethyl acetate extraction as described in Materials and Methods section (sample 1) or by size exclusion chromatography (sample 2). The Y axis indicates relative carbonyl content (%) in samples 2 compared to samples 1 for each protein preparation. These data were average of three separate experiments. Size exclusion chromatography utilizing Bio-Gel P-6 (Micro BioSpin chromatography columns, Bio-Rad Laboratories, Harcules, CA) : 100 μl of oxidized protein samples were derivatized with DNPH, precipitated with final 20% TCA, briefly rinsed with ethanol/ethyl acetate (1:1 v/v) and air dried. The precipitate was resolved in 70 μl of 6M Gu-HCl solution and the proteins were separated from free un-reacted DNPH by size exclusion column chromatography utilizing Bio-Gel P-6 spin column. (GIF 66 kb)

High resolution image (EPS 402 kb)

Supplementary Figure S2

Analysis of aggregate formation in rabbit IgG (RIgG) or transferrin stored at various temperature with or without Fe 2+ /H 2 O 2 /ascorbic acid. A. Analysis by Zetasizer dynamic light scattering. Y-axis denotes derived count rate (Kcps: kilocounts per second). B. Binding of molecular rotor dye. 25μg of RIgG or transferrin was mixed with Proteostat dye and RFU (excitation 550nm/emission 600nm) was measured following manufacturer’s instruction. (GIF 51 kb)

High resolution image (EPS 431 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uehara, H., Rao, V.A. Metal-Mediated Protein Oxidation: Applications of a Modified ELISA-Based Carbonyl Detection Assay for Complex Proteins. Pharm Res 32, 691–701 (2015). https://doi.org/10.1007/s11095-014-1496-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-014-1496-y

KEY WORDS

Navigation