Skip to main content

Advertisement

Log in

Fetal Membrane Transport Enhancement Using Ultrasound for Drug Delivery and Noninvasive Detection

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

The purpose of this research was to evaluate the effect of ultrasound on mass transport across fetal membrane for direct fetal drug delivery and sensing of the amniotic fluid in a noninvasive manner.

Methods

Post-delivery human fetal membranes (chorioamnion) were used for in vitro experiments, in which the effect of ultrasound on transport across fetal membrane of fluorescent model molecule (250 kDa) was evaluated. Ex vivo experiments were carried out on a whole rat amniotic sac. The model molecule or alpha-fetoprotein was injected into the amniotic sac through the placenta. Transport of these molecules across pre- and post-insonation of the amniotic sac was evaluated. The ultrasound enhancement’s mechanism was also assessed.

Results

The greatest enhancement in mass transport (43-fold) in vitro was achieved for 5 min of insonation (20 kHz, 4.6 W/cm2, 5 mm distance). Ex vivo results showed a rapid increase (23-fold) in mass transport of the model molecule and also for alphafetoprotein following 30 s of insonation (20 kHz, 4.6 W/cm2, 5 mm distance).

Conclusions

Mass transport across fetal membranes was enhanced post-insonation both in vitro and ex vivo in a reversible and transient manner. We suggest that exterior (to the amniotic sac) ultrasound-induced cavitation is the main mechanism of action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

FITC:

Fluorescein isothiocyanate

PBS:

Phosphate buffered saline

s.e.m.:

Standard error of mean

SATP:

Spatial average temporal peak

SD:

Sprague–Dawley

SPTP:

Spatial peak temporal peak

US:

Ultrasound

αFP:

Alpha-fetoprotein

REFERENCES

  1. Aboofazeli R, Zia H, Needham TE. Transdermal delivery of nicardipine: an approach to in vitro permeation enhancement. Drug Deliv. 2002;9(4):239–47.

    Article  CAS  PubMed  Google Scholar 

  2. Kushner J, Blankschtein D, Langer R. Heterogeneity in skin treated with low–frequency ultrasound. J Pharm Sci. 2008;97(10):4119–28.

    Article  CAS  PubMed  Google Scholar 

  3. Shealtiel L. The effect of Ultrasound on the debridement of chronic wound. PhD thesis. Department of chemical engineering, Ben-Gurion University.

  4. Tupker R, Pinnagoda J, Nater J. The transient and cumulative effect of sodium lauryl sulphate on the epidermal barrier assessed by transepidermal water loss: inter-individual variation. Acta Derm Venereol. 1990;70(1):1–5.

    CAS  PubMed  Google Scholar 

  5. Gil MM, Akolekar R, Quezada MS, Bregant B, Nicolaides KH. Analysis of Cell-Free DNA in Maternal Blood in Screening for Aneuploidies: Meta-Analysis. Fetal Diagn Ther. 2014.

  6. Kost J, Pliquett U, Mitragotri S, Yamamoto A, Langer R, Weaver J. Synergistic effect of electric field and ultrasound on transdermal transport. Pharm Res. 1996;13(4):633–8.

    Article  CAS  PubMed  Google Scholar 

  7. Lauterborn W, Kurz T, Geisler R, Schanz D, Lindau O. Acoustic cavitation, bubble dynamics and sonoluminescence. Ultrason Sonochem. 2007;14(4):484–91.

    Article  CAS  PubMed  Google Scholar 

  8. Calvin SE, Oyen ML. Microstructure and mechanics of the chorioamnion membrane with an emphasis on fracture properties. Ann N Y Acad Sci. 2007;1101:166–85.

    Article  PubMed  Google Scholar 

  9. Jabareen M, Mallik AS, Bilic G, Zisch AH, Mazza E. Relation between mechanical properties and microstructure of human fetal membranes: an attempt towards a quantitative analysis. Eur J Obstet Gynecol Reprod Biol. 2009;144:S134–41.

    Article  CAS  PubMed  Google Scholar 

  10. Shuster S, Black MM, McVitie E. The influence of age and sex on skin thickness, skin collagen and density. Br J Dermatol. 1975;93:639–43.

    Article  CAS  PubMed  Google Scholar 

  11. Kost J, Wolloch L. Ultrasound in percutaneous absorption. In: Touitou E, Barry BW, editors. Enhancement in drug delivery. Boca Raton: CRC Press; 2006. p. 317–30.

    Google Scholar 

  12. Azagury A, Khoury L, Enden G, Kost J. Ultrasound mediated transdermal drug delivery. Adv Drug Deliv Rev. 2013.

  13. Lavon I, Kost J. Ultrasound and transdermal drug delivery. Drug Discov Today. 2004;9(15):670–6.

    Article  CAS  PubMed  Google Scholar 

  14. Prausnitz MR, Mitragotri S, Langer R. Current status and future potential of transdermal drug delivery. Nat Rev Drug Discov. 2004;3(2):115–24.

    Article  CAS  PubMed  Google Scholar 

  15. Fang J, Fang C, Sung K, Chen H. Effect of low frequency ultrasound on the in vitro percutaneous absorption of clobetasol 17-propionate. Int J Pharm. 1999;191(1):33–42.

    Article  CAS  PubMed  Google Scholar 

  16. Bommannan D, Okuyama H, Stauffer P, Guy RH. Sonophoresis. I. The use of high-frequency ultrasound to enhance transdermal drug delivery. Pharm Res. 1992;9(4):559–64.

    Article  CAS  PubMed  Google Scholar 

  17. Boucaud A, Machet L, Arbeille B, Machet M, Sournac M, Mavon A, et al. In vitro study of low-frequency ultrasound-enhanced transdermal transport of fentanyl and caffeine across human and hairless rat skin. Int J Pharm. 2001;228(1):69–77.

    Article  CAS  PubMed  Google Scholar 

  18. Mitragotri S, Kost J. Transdermal delivery of heparin and low-molecular weight heparin using low-frequency ultrasound. Pharm Res. 2001;18(8):1151–6.

    Article  CAS  PubMed  Google Scholar 

  19. Mutoh M, Ueda H, Nakamura Y, Hirayama K, Atobe M, Kobayashi D, et al. Characterization of transdermal solute transport induced by low-frequency ultrasound in the hairless rat skin. J Control Release. 2003;92(1):137–46.

    Article  CAS  PubMed  Google Scholar 

  20. Tachibana K, Tachibana S. Transdermal delivery of insulin by ultrasonic vibration. J Pharm Pharmacol. 1991;43(4):270–1.

    Article  CAS  PubMed  Google Scholar 

  21. Mitragotri S, Blankschtein D, Langer R. Ultrasound-mediated transdermal protein delivery. Science. 1995;269(5225):850–3.

    Article  CAS  PubMed  Google Scholar 

  22. Mitragotri S, Blankschtein D, Langer R. Transdermal drug delivery using low-frequency sonophoresis. Pharm Res. 1996;13(3):411–20.

    Article  CAS  PubMed  Google Scholar 

  23. Katz NP, Shapiro DE, Herrmann TE, Kost J, Custer LM. Rapid onset of cutaneous anesthesia with EMLA cream after pretreatment with a new ultrasound-emitting device. Anesth Analg. 2004;98(2):371–6.

    Article  CAS  PubMed  Google Scholar 

  24. Kost J, Mitragotri S, Gabbay RA, Pishko M, Langer R. Transdermal monitoring of glucose and other analytes using ultrasound. Nat Med. 2000;6(3):347–50.

    Article  CAS  PubMed  Google Scholar 

  25. Mitragotri S, Coleman M, Kost J, Langer R. Transdermal extraction of analytes using low-frequency ultrasound. Pharm Res. 2000;17(4):466–70.

    Article  CAS  PubMed  Google Scholar 

  26. Chuang H, Taylor E, Davison TW. Clinical evaluation of a continuous minimally invasive glucose flux sensor placed over ultrasonically permeated skin. Diabetes Technol Ther. 2004;6(1):21–30.

    Article  CAS  PubMed  Google Scholar 

  27. Lee S, Nayak V, Dodds J, Pishko M, Smith NB. Glucose measurements with sensors and ultrasound. Ultrasound Med Biol. 2005;31(7):971–7.

    Article  PubMed  Google Scholar 

  28. Schaefer H, Redelmeier TE. Skin barrier. Principles of Percutaneous Absorption. Arzneimittel-Forschung. 1997;47(2):228–9.

    Google Scholar 

  29. Johnson-Hopson NC, Artlett IMC. Evidence against the long-term persistence of fetal DNA in maternal plasma after pregnancy. Hum Genet. 2002;111(6):575–5.

    Article  CAS  PubMed  Google Scholar 

  30. Lavon I, Grossman N, Kost J, Kimmel E, Enden G. Bubble growth within the skin by rectified diffusion might play a significant role in sonophoresis. J Control Release. 2007;117(2):246–55.

    Article  CAS  PubMed  Google Scholar 

  31. Nishida Y, Yoshida S, Li HJ, Higuchi Y, Takai N, Miyakawa I. FTIR spectroscopic analyses of human placental membranes. Biopolymers. 2001;62(1):22–8.

    Article  CAS  PubMed  Google Scholar 

  32. Wolloch L, Kost J. The importance of microjet vs shock wave formation in sonophoresis. J Control Release. 2010;148(2):204–11.

    Article  CAS  PubMed  Google Scholar 

  33. Terahara T, Mitragotri S, Kost J, Langer R. Dependence of low-frequency sonophoresis on ultrasound parameters; distance of the horn and intensity. Int J Pharm. 2002;235(1):35–42.

    Article  CAS  PubMed  Google Scholar 

  34. Polat BE, Deen WM, Langer R, Blankschtein D. A physical mechanism to explain the delivery of chemical penetration enhancers into skin during transdermal sonophoresis—Insight into the observed synergism. J Control Release. 2012;158:250–60.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Merino G, Kalia YN, Delgado-Charro MB, Potts RO, Guy RH. Frequency and thermal effects on the enhancement of transdermal transport by sonophoresis. J Control Release. 2003;88(1):85–94.

    Article  CAS  PubMed  Google Scholar 

  36. Zderic V, Clark JI, Vaezy S. Drug delivery into the eye with the use of ultrasound. J Ultrasound Med. 2004;23(10):1349–59.

    PubMed  Google Scholar 

  37. Traitel T, Kost J, Lapidot SA. Modeling ionic hydrogels swelling: characterization of the non–steady state. Biotechnol Bioeng. 2003;84(1):20–8.

    Article  CAS  PubMed  Google Scholar 

  38. Watabe H. Purification and chemical characterization of α-fetoprotein from rat and mouse. Int J Cancer. 1974;13:377–88.

    Article  CAS  PubMed  Google Scholar 

  39. Bajoria R, Fisk NM. Permeability of human placenta and fetal membranes to thyrotropin-stimulating hormone in vitro. Pediatr Res. 1998;43:621–8.

    Article  CAS  PubMed  Google Scholar 

  40. Dugoff L, Hobbins JC, Malone FD, Porter TF, Luthy D, Comstock CH, et al. First-trimester maternal serum PAPP-A and free-beta subunit human chorionic gonadotropin concentrations and nuchal translucency are associated with obstetric complications: a population-based screening study (the FASTER Trial). Obstet Gynecol. 2004;191(4):1446–51.

    Article  CAS  Google Scholar 

  41. Barry B. Lipid-protein-partitioning theory of skin penetration enhancement. J Control Release. 1991;15(3):237–48.

    Article  CAS  Google Scholar 

  42. Mason TJ. Chemistry with ultrasound. Amsterdam: Elsevier Science Pub. Co.; 1990. p. 8–10.

    Google Scholar 

  43. Park D, Yoon J, Park J, Jung B, Park H, Seo J. Transdermal drug delivery aided by an ultrasound contrast agent: an in vitro experimental study. Open Biomed Eng J. 2010;4:56–62.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Tezel A, Mitragotri S. Interactions of inertial cavitation bubbles with stratum corneum lipid bilayers during low-frequency sonophoresis. Biophys J. 2003;85(6):3502–12.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Tang H, Wang CCJ, Blankschtein D, Langer R. An investigation of the role of cavitation in low-frequency ultrasound-mediated transdermal drug transport. Pharm Res. 2002;19(8):1160–9.

    Article  CAS  PubMed  Google Scholar 

  46. Tezel A, Sens A, Mitragotri S. Investigations of the role of cavitation in low–frequency sonophoresis using acoustic spectroscopy. J Pharm Sci. 2002;91(2):444–53.

    Article  CAS  PubMed  Google Scholar 

  47. Kopelman D, Papa M. Magnetic resonance–guided focused ultrasound surgery for the noninvasive curative ablation of tumors and palliative treatments: a review. Ann Surg Oncol. 2007;14(5):1540–50.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Kost.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wolloch, L., Azagury, A., Goldbart, R. et al. Fetal Membrane Transport Enhancement Using Ultrasound for Drug Delivery and Noninvasive Detection. Pharm Res 32, 403–413 (2015). https://doi.org/10.1007/s11095-014-1470-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-014-1470-8

KEY WORDS

Navigation