Skip to main content

Advertisement

Log in

Preparation and In Vitro Evaluation of Imiquimod Loaded Polylactide-based Micelles as Potential Vaccine Adjuvants

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Activation of immune cells through pattern recognition receptors (PRRs), such as Toll-like receptors (TLRs) or NOD-like receptors (NLRs), has been identified as a key issue in the development of new efficient vaccine adjuvants. We report here on the elaboration and immunostimulatory potential of polylactide (PLA)-based micelles core-loaded with imiquimod TLR7 ligand and able to be further surface-functionalized with antigenic protein (HIV-1 Gag p24) for antigen delivery purpose.

Methods

Micelles prepared from poly(D,L-lactide)-b-poly(N-acryloxysuccinimide-co-N-vinylpyrrolidone) amphiphilic copolymer were incubated in the presence of imiquimod, leading to 1.2 wt% loading, and further conjugated to p24 antigen through reaction of p24 lysines and N-terminal amine with the N-succinimidyl pendant groups of the micelle corona. The impact of imiquimod encapsulation in the micelles on its immunostimulatory properties was investigated in vitro, by monitoring: (i) the NF-κB and mitogen-activated protein kinases (MAPK) pathways through experiments with RAW-Blue™ cells, a mouse macrophage cell line encoding an NF-κB/AP-1-inducible reporter construct; (ii) human dendritic cells (DCs) maturation markers by flow cytometry.

Results

RAW-Blue™ cells based experiments showed that imiquimod encapsulated in the micelles was much more efficient to activate the NF-κB and MAPK pathways than free imiquimod. Furthermore, encapsulated imiquimod was found to induce much higher maturation of DCs than the free analog. Finally, these immunostimulatory properties of the loaded imiquimod were shown to be conserved when the p24 antigen was coupled at the micelle surface.

Conclusions

Taken together, these data regarding improved immunostimulatory efficiency suggest the strong potential of our micelle-based nano-system for vaccine delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Alving CR, Peachman KK, Rao M, Reed SG. Adjuvants for human vaccines. Curr Opin Immunol. 2012;24:310–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Kool M, Fierens K, Lambrecht BN. Alum adjuvant: some of the tricks of the oldest adjuvant. J Med Microbiol. 2012;61:927–34.

    Article  CAS  PubMed  Google Scholar 

  3. Gregoriadis G, McCormack B, Obrenovic M, Saffie R, Zadi B, Perrie Y. Liposomes as immunological adjuvants and vaccine carriers. Methods. 1999;19:156–62.

    Article  CAS  PubMed  Google Scholar 

  4. Fox CB, Haensler J. An update on safety and immunogenicity of vaccines containing emulsion-based adjuvants. Expert Rev Vaccine. 2013;12:747–58.

    Article  CAS  Google Scholar 

  5. Rice-Ficht AC, Arenas-Gamboa AM, Kahl-McDonagh MM, Ficht TA. Polymeric particles in vaccine delivery. Curr Opin Microbiol. 2010;13:106–12.

    Article  CAS  PubMed  Google Scholar 

  6. Kasturi SP, Skountzou J, Albrecht RA, Koutsonanos D, Hua T, Nakaya HI, et al. Programming the magnitude and persistence of antibody responses with innate immunity. Nature. 2011;470:543–50.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Pavot V, Rochereau N, Primard C, Genin C, Perouzel E, Lioux T, et al. Encapsulation of Nod1 and Nod2 receptor ligands into poly(lactic acid) nanoparticles potentiates their immune properties. J Control Release. 2013;167:60–7.

    Article  CAS  PubMed  Google Scholar 

  8. Guillon C, Mayol K, Terrat C, Compagnon C, Primard C, Charles MH, et al. Formulation of HIV-1 Tat and p24 antigens by PLA nanoparticles or MF59 impacts the breadth, but not the magnitude, of serum and faecal antibody responses in rabbits. Vaccine. 2007;25:7491–501.

    Article  CAS  PubMed  Google Scholar 

  9. Ataman-Onal Y, Munier S, Ganée A, Terrat C, Durand PY, Battail N, et al. Surfactant-free anionic PLA nanoparticles coated with HIV-1 p24 protein induced enhanced cellular and humoral immune responses in various animal models. J Control Release. 2006;112:175–85.

    Article  PubMed  Google Scholar 

  10. Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol. 2010;11:373–84.

    Article  CAS  PubMed  Google Scholar 

  11. Geddes K, Magalhães JG, Girardin S. Unleashing the therapeutic potential of NOD-like receptors. Nat Rev Drug Discov. 2009;8:465–79.

    Article  CAS  PubMed  Google Scholar 

  12. Reddy ST, Swartz MA, Hubbell JA. Targeting dendritic cells with biomaterials. Trends Immunol. 2006;27:573–9.

    Article  CAS  PubMed  Google Scholar 

  13. Kazzaz J, Singh M, Ugozzoli M, Chesko J, Soenawan E, O’Hagan DT. Encapsulation of the immune potentiators MPL and RC529 in PLG microparticles enhances their potency. J Control Release. 2006;110:566–73.

    Article  CAS  PubMed  Google Scholar 

  14. Hafner AM, Corthésy B, Merkle HP. Particulate formulations for the delivery of poly(I:C) as vaccine adjuvant. Adv Drug Deliv Rev. 2013;65:1386–99.

    Article  CAS  PubMed  Google Scholar 

  15. Schlosser E, Mueller M, Fischer S, Basta S, Busch DH, Gander B, et al. TLR ligands and antigen need to be coencapsulated into the same biodegradable microsphere for the generation of potent cytotoxic T lymphocyte responses. Vaccine. 2008;26:1626–37.

    Article  CAS  PubMed  Google Scholar 

  16. Fievez V, Plapied L, des Rieux A, Pourcelle V, Freichels H, Wascotte V, et al. Tarteting nanoparticles to M cells with non-peptidic ligands for oral vaccination. Eur J Pharm Biopharm. 2009;73:16–24.

    Article  CAS  PubMed  Google Scholar 

  17. Beutner KR, Spruance SL, Hougham AJ, Fox TL, Owens ML, Douglas Jr JM. Treatment of genital warts with an immune response. J Am Acad Dermatol. 1998;38:230–9.

    Article  CAS  PubMed  Google Scholar 

  18. Miller RL, Gerster JF, Owens ML, Slade HB, Tomai MA. Imiquimod applied topically: a novel immune response modifier and new class of drug. Int J Immunopharmacol. 1999;21:1–14.

    Article  CAS  PubMed  Google Scholar 

  19. Larange A, Antonios D, Pallardy M, Kerdine-Romer S. TLR7 and TLR8 agonists trigger different signaling pathways for human dendritic cell maturation. J Leukoc Biol. 2009;85:673–83.

    Article  CAS  PubMed  Google Scholar 

  20. Bachelder EM, Beaudette TT, Broaders KE, Frechet JM, Albrecht MT, Mateczun AJ, et al. In vitro analysis of acetalated dextran microparticles as a potent delivery platform for vaccine adjuvants. Mol Pharm. 2010;7:826–35.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Handké N, Lahaye V, Bertin D, Delair T, Verrier B, Gigmes D, et al. Elaboration of glycopolymer-functionalized micelles from an N-vinylpyrrolidone/lactide-based reactive copolymer platform. Macromol Biosci. 2013;13:1213–20.

    Article  PubMed  Google Scholar 

  22. Handké N, Ficheux D, Rollet M, Delair T, Mabrouk K, Bertin D, et al. Lysine-tagged peptide coupling onto polylactide nanoparticles coated with activated ester-based amphiphilic copolymer : a route to highly peptide-functionalized biodegradable carriers. Colloids Surf B: Biointerfaces. 2013;103:298–303.

    Article  PubMed  Google Scholar 

  23. Le Garrec D, Gori S, Luo L, Lessard D, Smith DC, Yessine MA, et al. Poly(N-vinylpyrrolidone)-block-poly(D, L-lactide) as a new polymeric solubilizer for hydrophobic anticancer drugs: in vitro and in vivo evaluation. J Control Release. 2004;99:83–101.

    Article  PubMed  Google Scholar 

  24. Gaucher G, Asahina K, Wang J, Leroux JC. Effect of poly(N-vinyl-pyrrolidone)-block-poly(D, L-lactide) as coating agent on the opsonization, phagocytosis, and pharmacokinetics of biodegradable nanoparticles. Biomacromolecules. 2009;10:408–16.

    Article  CAS  PubMed  Google Scholar 

  25. Reddy ST, Rehor A, Schmoekel HG, Hubbell JA, Swartz MA. In vivo targeting of dendritic cells in lymph nodes with poly(propylene sulfide) nanoparticles. J Control Release. 2006;112:26–34.

    Article  CAS  PubMed  Google Scholar 

  26. Reddy ST, van der Vlies AJ, Simeoni E, Angeli V, Randolph GJ, O’Neil CP, et al. Exploiting lymphatic transport and complement activation in nanoparticle vaccines. Nat Biotechnol. 2007;25:1159–64.

    Article  CAS  PubMed  Google Scholar 

  27. Eby JK, Dane KY, O’Neil CP, Hirosue S, Swartz MA, Hubbell JA. Polymer micelles with pyridyl disulfide-coupled antigen travel through lymphatics and show enhanced cellular responses following immunization. Acta Biomater. 2012;8:3210–7.

    Article  CAS  PubMed  Google Scholar 

  28. Tong J, Luxenhofer R, Yi X, Jordan R, Kabanov AV. Protein modification with amphiphilic block copoly(2-oxazoline)s as a new platform for enhanced cellular delivery. Mol Pharm. 2010;7:984–92.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Heffernan MJ, Murthy N. Disulfide-crosslinked polyion micelles for delivery of protein therapeutics. Ann Biomed Eng. 2009;37:1993–2002.

    Article  PubMed  Google Scholar 

  30. Hong L, Jinzhi L. Scaling law for the radius of gyration of proteins and its dependence on hydrophobicity. J Polym Sci B Polym Phys. 2009;47:207–14.

    Article  CAS  Google Scholar 

  31. Schon MP, Schon M. Imiquimod: mode of action. Br J Dermatol. 2007;157:8–13.

    Article  PubMed  Google Scholar 

  32. Zhu KJ, Cen JP, Lou JX, Wang Q, Zhang X, Xu Y, et al. Imiquimod inhibits the differentiation but enhances the maturation of human monocyte-derived dendritic cells. Int Immunopharmacol. 2009;9:412–7.

    Article  CAS  PubMed  Google Scholar 

  33. Burns RP, Ferbel B, Tomai M, Miller R, Gaspari AA. The imidazoquinolines, imiquimod and R-848, induce functional, but not phenotypic, maturation of human epidermal langerhans’ cells. Clin Immunol. 2000;94:13–23.

    Article  CAS  PubMed  Google Scholar 

  34. Wischke C, Zimmermann J, Wessinger B, Schendler A, Borchert HH, Peters JH, et al. Poly(I:C) coated PLGA microparticles induce dendritic cell maturation. Int J Pharm. 2009;365:61–8.

    Article  CAS  PubMed  Google Scholar 

  35. Tacken PJ, Zeelenberg IS, Cruz LJ, van Hout-Kuijer MA, van de Glind G, Fokkink RG, et al. Targeted delivery of TLR ligands to human and mouse dendritic cells strongly enhances adjuvanticity. Blood. 2011;118:6836–44.

    Article  CAS  PubMed  Google Scholar 

  36. Wischke C, Mathew S, Roch T, Frentsch M, Lendlein A. Potential of NOD receptor ligands as immunomodulators in particulate vaccine carriers. J Control Release. 2012;164:299–306.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

This work was funded by the ANR (French National Research Agency) through Euronanomed grant (iNanoDCs) and ANabio research projects, and Fondation Recherche Médicale (FRM) to Vincent Pavot. This work was also partially supported by grants from the two FP7 European grants CUT'HIVAC (no 241904) and ADITEC (no 280873). The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vincent Pavot or Thomas Trimaille.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

(DOC 29.5 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiménez-Sánchez, G., Pavot, V., Chane-Haong, C. et al. Preparation and In Vitro Evaluation of Imiquimod Loaded Polylactide-based Micelles as Potential Vaccine Adjuvants. Pharm Res 32, 311–320 (2015). https://doi.org/10.1007/s11095-014-1465-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-014-1465-5

KEY WORDS

Navigation