Skip to main content
Log in

Fluorescent Dye Labeled Iron Oxide/Silica Core/Shell Nanoparticle as a Multimodal Imaging Probe

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

An Erratum to this article was published on 02 December 2014

Abstract

Purpose

To develop an MRI/optical multimodal imaging probe based on dye-conjugated iron oxide/silica core/shell nanoparticle, and investigate the distance-dependent fluorescence quenching through careful control of the distance between the iron oxide core and fluorescent dyes.

Methods

Different size of core/shell nanoparticles were prepared by varying the silica shell width. PEGylation on the surface of silica shell was followed to improve the stability of particles in the physiological condition. In vitro cytotoxicity was evaluated by the MTT assay on a HeLa cell line and in vivo imaging of subcutaneous SCC7 xenografted mice was performed using MRI/optical imaging modalities.

Results

Diameter and ζ-potential of the nanoparticles were measured, and TEM images demonstrated the mono-disperse nature of the particles. Quenching efficiency of the dyes on the surface was nearly 100% in the smallest nanoparticle, while almost no quenching effect was observed for the largest nanoparticle. In vitro cytotoxicity showed nearly 90% cell viability at 0.15 Fe mg/mL, a comparable concentration for clinical use. The tumor area was significantly darkened after the nanoparticle injection due to the high transverse relaxivity value of the nanoparticles. Fluorescence signal was affected by the particle size due to the distance-dependent quenching/dequenching behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

APTES:

3-aminopropyl triethoxysilane

Cy:

Cyanine

CY-CS:

Cy-conjugated CS

CS:

Core-shell

DMEM:

Dulbecco’s modified eagle medium

EDC:

Ethyl (dimethylaminopropyl) carbodiimide

FBS:

Fetal bovine serum

FRET:

Fluorescence resonance energy transfer

HF:

Hydrofluoric acid

ICP-MS:

Inductively coupled plasma mass spectrometry

mPEG-COOH:

Methoxy poly (ethylene glycol) mono acid

MRI:

Magnetic resonance imaging

MTT:

Methylthiazol tetrazolium

NIRF:

Near-infrared fluorescence

NHS:

N-hydroxysuccinimide

PL:

Photoluminescence

TEM:

Transmission electron microscopy

References

  1. Y-w J, Lee JH. Cheon J. Chemical Design of Nanoparticle Probes for High-Performance Magnetic Resonance Imaging. Angew Chem Int Ed. 2008;47(28):5122–35.

    Article  Google Scholar 

  2. Rudin M, Weissleder R. Molecular Imaging in Drug Discovery and Development. Nat Rev Drug Discov. 2003;2(2):123–31.

    Article  CAS  PubMed  Google Scholar 

  3. Smith RE, Tournier JD, Calamante F, Connelly A. Anatomically-Constrained Tractography: Improved Diffusion MRI Streamlines Tractography Through Effective use of Anatomical Information. NeuroImage. 2012;62(3):1924–38.

    Article  PubMed  Google Scholar 

  4. Abdalla MO, Karna P, Sajja HK, Mao H, Yates C, Turner T, et al. Enhanced Noscapine Delivery Using uPAR-Targeted Optical-MR Imaging Trackable Nanoparticles for Prostate Cancer Therapy. J Control Release. 2011;149(3):314–22.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Kutscher HL, Chao P, Deshmukh M, Singh Y, Hu P, Joseph LB, et al. Threshold Size for Optimal Passive Pulmonary Targeting and Retention of Rigid Microparticles in Rats. J Control Release. 2010;143(1):31–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Rosi NL, Giljohann DA, Thaxton CS, Lytton-Jean AKR, Han MS, Mirkin CA. Oligonucleotide-Modified Gold Nanoparticles for Intracellular Gene Regulation. Science. 2006;312(5776):1027–30.

    Article  CAS  PubMed  Google Scholar 

  7. Huang X, El-Sayed IH, Qian W, El-Sayed MA. Cancer Cell Imaging and Photothermal Therapy in the Near-Infrared Region by Using Gold Nanorods. J Am Chem Soc. 2006;128(6):2115–20.

    Article  CAS  PubMed  Google Scholar 

  8. Sun IC, Eun DK, Koo H, Ko CY, Kim HS, Yi DK, et al. Tumor-Targeting Gold Particles for Dual Computed Tomography/Optical Cancer Imaging. Angew Chem Int Ed. 2011;50(40):9348–51.

    Article  CAS  Google Scholar 

  9. Shin J, Anisur RM, Ko MK, Im GH, Lee JH, Lee IS. Hollow Manganese Oxide Nanoparticles as Multifunctional Agents for Magnetic Resonance Imaging and Drug Delivery. Angew Chem Int Ed. 2009;48(2):321–4.

    Article  CAS  Google Scholar 

  10. Kim J, Kim HS, Lee N, Kim T, Kim H, Yu T, et al. Multifunctional Uniform Nanoparticles Composed of a Magnetite Nanocrystal Core and a Mesoporous Silica Shell for Magnetic Resonance and Fluorescence Imaging and for Drug Delivery. Angew Chem Int Ed. 2008;47(44):8438–41.

    Article  CAS  Google Scholar 

  11. Yu MK, Jeong YY, Park J, Park S, Kim JW, Min JJ, et al. Drug-Loaded Superparamagnetic Iron Oxide Nanoparticles for Combined Cancer Imaging and Therapy In Vivo. Angew Chem Int Ed. 2008;47(29):5362–5.

    Article  CAS  Google Scholar 

  12. Choi J, Lee S, Kang HJ, Lee J, Kim J, Yoo HO, et al. Synthesis of Water-Soluble Chitosan-g-PEO and its Application for Preparation of Superparamagnetic Iron Oxide Nanoparticles in Aqueous Media. Macromol Res. 2010;18(5):504–11.

    Article  CAS  Google Scholar 

  13. Selim KMK, Lee JH, Kim SJ, Xing Z, Kang IK, Chang Y, et al. Surface Modification of Magnetites Using Maltotrionic Acid and Folic Acid for Molecular Imaging. Macromol Res. 2006;14(6):646–53.

    Article  CAS  Google Scholar 

  14. Kim J, Park S, Lee JE, Jin SM, Lee JH, Lee IS, et al. Designed Fabrication of Multifunctional Magnetic Gold Nanoshells and Their Application to Magnetic Resonance Imaging and Photothermal Therapy. Angew Chem Int Ed. 2006;45(46):7754–8.

    Article  CAS  Google Scholar 

  15. Cha EJ, Jang ES, Sun IC, Lee IJ, Ko JH, Kim YI, et al. Development of MRI/NIRF ‘activatable’ Multimodal Imaging Probe Based on Iron Oxide Nanoparticles. J Control Release. 2011;155(2):152–8.

    Article  CAS  PubMed  Google Scholar 

  16. Josephson L, Kircher MF, Mahmood U, Tang Y, Weissleder R. Near-Infrared Fluorescent Nanoparticles as Combined MR/Optical Imaging Probes. Bioconjug Chem. 2002;13(3):554–60.

    Article  CAS  PubMed  Google Scholar 

  17. Dulkeith E, Morteani AC, Niedereichholz T, Klar TA, Feldmann J, Levi SA, et al. Fluorescence Quenching of Dye Molecules near Gold Nanoparticles: Radiative and Nonradiative Effects. Phys Rev Lett. 2002;89(20):203002.

    Article  CAS  PubMed  Google Scholar 

  18. Mandal SK, Lequeux N, Rotenberg B, Tramier M, Fattaccioli J, Bibette J, et al. Encapsulation of Magnetic and Fluorescent Nanoparticles in Emulsion Droplets. Langmuir. 2005;21(9):4175–9.

    Article  CAS  PubMed  Google Scholar 

  19. Sathe TR, Agrawal A, Nie S. Mesoporous Silica Beads Embedded with Semiconductor Quantum Dots and Iron Oxide Nanocrystals: Dual-Function Microcarriers for Optical Encoding and Magnetic Separation. Anal Chem. 2006;78(16):5627–32.

    Article  CAS  PubMed  Google Scholar 

  20. Zhang L, Liu B, Dong S. Bifunctional Nanostructure of Magnetic Core Luminescent Shell and Its Application as Solid-State Electrochemiluminescence Sensor Material. J Phys Chem B. 2007;111(35):10448–52.

    Article  CAS  PubMed  Google Scholar 

  21. Ma D, Guan J, Dénommée S, Enright G, Veres T, Simard B. Multifunctional Nano-Architecture for Biomedical Applications. Chem Mater. 2006;18(7):1920–7.

    Article  CAS  Google Scholar 

  22. Lee S, Cha EJ, Park K, Lee SY, Hong JK, Sun IC, et al. A Near-Infrared-Fluorescence-Quenched Gold-Nanoparticle Imaging Probe for In Vivo Drug Screening and Protease Activity Determination. Angew Chem Int Ed. 2008;47(15):2804–7.

    Article  CAS  Google Scholar 

  23. Cheong S, Ferguson P, Feindel KW, Hermans IF, Callaghan PT, Meyer C, et al. Simple Synthesis and Functionalization of Iron Nanoparticles for Magnetic Resonance Imaging. Angew Chem Int Ed. 2011;50(18):4206–9.

    Article  CAS  Google Scholar 

  24. Mosmann T. Rapid Colorimetric Assay for Cellular Growth and Survival: Application to Proliferation and Cytotoxicity Assays. J Immunol Methods. 1983;65(1–2):55–63.

    Article  CAS  PubMed  Google Scholar 

  25. Chen F, Bu W, Chen Y, Fan Y, He Q, Zhu M, et al. A Sub-50 nm Monosized Superparamagnetic Fe3O4@SiO2T2-Weighted MRI Contrast Agent: Highly Reproducible Synthesis of Uniform Single-Loaded Core–Shell Nanostructures. Chemistry – An Asian. Journal. 2009;4(12):1809–16.

    CAS  Google Scholar 

  26. Lim CK, Kim S, Kwon IC, Ahn CH, Park SY. Dye-Condensed Biopolymeric Hybrids: Chromophoric Aggregation and Self-Assembly toward Fluorescent Bionanoparticles for Near Infrared Bioimaging. Chem Mater. 2009;21(24):5819–25.

    Article  CAS  Google Scholar 

  27. Schobel U, Egelhaaf HJ, Brecht A, Oelkrug D, Gauglitz G. New Donor − Acceptor Pair for Fluorescent Immunoassays by Energy Transfer. Bioconjug Chem. 1999;10(6):1107–14.

    Article  CAS  PubMed  Google Scholar 

  28. LaConte LEW, Nitin N, Zurkiya O, Caruntu D, O’Connor CJ, Hu X, et al. Coating Thickness of Magnetic Iron Oxide Nanoparticles Affects R2 Relaxivity. J Magn Reson Imaging. 2007;26(6):1634–41.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments and Disclosures

This study was supported by a grant from Basic Science Research Program (grant no. 2010–0027955) of MEST and National Research Foundation of Korea (grant no. 2010–0023581). C.-H. Ahn appreciate LG Yonam Foundation for the support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Young Il Kim, Kwangmeyung Kim or Cheol-Hee Ahn.

Additional information

These authors Eue Soon Jang and Seung Yong Lee are contributed equally to this paper

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 411 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jang, E.S., Lee, S.Y., Cha, EJ. et al. Fluorescent Dye Labeled Iron Oxide/Silica Core/Shell Nanoparticle as a Multimodal Imaging Probe. Pharm Res 31, 3371–3378 (2014). https://doi.org/10.1007/s11095-014-1426-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-014-1426-z

Key Words

Navigation