Skip to main content

Advertisement

Log in

Exploring the Wnt Pathway-Associated LncRNAs and Genes Involved in Pancreatic Carcinogenesis Driven by Tp53 Mutation

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

Study the contribution of long non-coding RNAs (lncRNAs) to progression of pancreatic intraepithelial neoplasia (PanIN) to pancreatic ductal adenocarcinoma (PDAC).

Methods

We explored lncRNAs profilings in PanIN cell line (SH-PAN) isolated from Pdx-1-Cre; LSL-Kras G12D/+ mice and PDAC cell line (DT-PCa) isolated from Pdx-1-Cre; LSL- Kras G12D/+ ; LSL- Tp53 R172H/+ mice by lncRNAs microarray, and detected expression of lncRNAs and genes in PDAC by Real-time PCR, Western blot, ChIP and immunohistochemistry.

Results

Eight lncRNAs and five protein-coding genes, associated with Wnt pathway, were identified with more than five-fold changes between DT-PCa cells and SH-PAN cells. Of them, lincRNA1611 and Ppp3ca were validated significantly high expression in DT-PCa cells and in 22 of 26 fresh resected human PDAC tissues, compared to SH-PAN cells and normal pancreatic tissues, respectively. Moreover, Tp53 mutation status displayed a positive correlation with lincRNA1611 or Ppp3ca level. Immunohistochemical staining for Ppp3ca was weak or lack in 91 of 107 normal pancreatic tissues, 24 of 29 PanIN-I and 13 of 16 PanIN-II tissues, however, was strong in 10 of 27 PanIN-III and 62 of 107 PDAC tissues post operation.

Conclusions

LincRNA1611 and Ppp3ca were high expression in PDAC and may serve as new potential targets for intervention of the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ChIP:

Chromatin immunoprecipitation

DT-PCa:

PDAC cell line

lncRNAs:

long non-coding RNAs

PanIN:

pancreatic intraepithelial neoplasia

PDAC:

pancreatic ductal adenocarcinoma

SH-PAN:

PanIN cell line

REFERENCES

  1. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J Clin. 2013;63:11–30.

    Article  PubMed  Google Scholar 

  2. Jemal A, Siegel R, Xu J, Ward E. Cancer statistics, 2010. CA Cancer J Clin. 2010;60:277–300.

    Article  PubMed  Google Scholar 

  3. Butturini G, Stocken DD, Wente MN, Jeekel H, Klinkenbijl JH, Bakkevold KE, et al. Influence of resection margins and treatment on survival in patients with pancreatic cancer: meta-analysis of randomized controlled trials. Arch Surg. 2008;143:75–83.

    Article  PubMed  Google Scholar 

  4. Vogelstein B, Kinzler KW. Cancer genes and the pathways they control. Nat Med. 2004;10:789–99.

    Article  CAS  PubMed  Google Scholar 

  5. Hingorani SR, Wang L, Multani AS, Combs C, Deramaudt TB, Hruban RH, et al. Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. Cancer Cell. 2005;7:469–83.

    Article  CAS  PubMed  Google Scholar 

  6. Shen R, Wang Q, Cheng S, Liu T, Jiang H, Zhu J, et al. The biological features of PanIN initiated from oncogenic Kras mutation in genetically engineered mouse models. Cancer Lett. 2013;339:135–43.

    Article  CAS  PubMed  Google Scholar 

  7. Yu M, Ting DT, Stott SL, Wittner BS, Ozsolak F, Paul S, et al. RNA sequencing of pancreatic circulating tumour cells implicates WNT signalling in metastasis. Nature. 2012;487:510–3.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. White BD, Chien AJ, Dawson DW. Dysregulation of Wnt/beta-catenin signaling in gastrointestinal cancers. Gastroenterology. 2012;142:219–32.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Morris JP, Wang SC, Hebrok M, Hedgehog KRAS. Wnt and the twisted developmental biology of pancreatic ductal adenocarcinoma. Nat Rev Cancer. 2010;10:683–95.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Qiu MT, Hu JW, Yin R, Xu L. Long noncoding RNA: an emerging paradigm of cancer research. Tumour Biol. 2013;34:613–20.

    Article  CAS  PubMed  Google Scholar 

  11. Yu G, Yao W, Wang J, Ma X, Xiao W, Li H, et al. LncRNAs expression signatures of renal clear cell carcinoma revealed by microarray. PLoS One. 2012;7:e42377.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Han Y, Liu Y, Nie L, Gui Y, Cai Z. Inducing cell proliferation inhibition, apoptosis, and motility reduction by silencing long noncoding ribonucleic acid metastasis-associated lung adenocarcinoma transcript 1 in urothelial carcinoma of the bladder. Urology. 2013;8:209. e1-7.

    Google Scholar 

  13. Zhu Z, Gao X, He Y, Zhao H, Yu Q, Jiang D, et al. An insertion/deletion polymorphism within RERT-lncRNA modulates hepatocellular carcinoma risk. Cancer Res. 2012;72:6163–72.

    Article  CAS  PubMed  Google Scholar 

  14. Yuan SX, Yang F, Yang Y, Tao QF, Zhang J, Huang G, et al. Long noncoding RNA associated with microvascular invasion in hepatocellular carcinoma promotes angiogenesis and serves as a predictor for hepatocellular carcinoma patients’ poor recurrence-free survival after hepatectomy. Hepatology. 2012;56:2231–41.

    Article  CAS  PubMed  Google Scholar 

  15. Yang F, Zhang L, Huo XS, Yuan JH, Xu D, Yuan SX, et al. Long noncoding RNA high expression in hepatocellular carcinoma facilitates tumor growth through enhancer of zeste homolog 2 in humans. Hepatology. 2011;54:1679–89.

    Article  CAS  PubMed  Google Scholar 

  16. Hingorani SR, Petricoin EF, Maitra A, Rajapakse V, King C, Jacobetz MA, et al. Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell. 2003;4:437–50.

    Article  CAS  PubMed  Google Scholar 

  17. Qian J, Niu J, Li M, Chiao PJ, Tsao MS. In vitro modeling of human pancreatic duct epithelial cell transformation defines gene expression changes induced by K-ras oncogenic activation in pancreatic carcinogenesis. Cancer Res. 2005;65:5045–53.

    Article  CAS  PubMed  Google Scholar 

  18. Wang Q, Liu H, Liu T, Shu S, Jiang H, Cheng S, et al. BRCA2 dysfunction promotes malignant transformation of pancreatic intraepithelial neoplasia. Anticancer Agents Med Chem. 2013;13:261–9.

    Article  CAS  PubMed  Google Scholar 

  19. Dong W, Shen R, Wang Q, Gao Y, Qi X, Jiang H. Y et al. Sp1 upregulates expression of TRF2 and TRF2 inhibition reduces tumorigenesis in human colorectal carcinoma cells. Cancer Biol Ther. 2009;8:2166–74.

    PubMed  Google Scholar 

  20. Hotz B, Arndt M, Dullat S, Bhargava S, Buhr HJ, Hotz HG. Epithelial to mesenchymal transition: expression of the regulators snail, slug, and twist in pancreatic cancer. Clin Cancer Res. 2007;13:4769–76.

    Article  CAS  PubMed  Google Scholar 

  21. Froeling FE, Feig C, Chelala C, Dobson R, Mein CE, Tuveson DA, et al. Retinoic acid-induced pancreatic stellate cell quiescence reduces paracrine Wnt-beta-catenin signaling to slow tumor progression. Gastroenterology. 2011;14:1486–97.

    Article  Google Scholar 

  22. Fiorini C, Menegazzi M, Padroni C, Dando I, Dalla Pozza E, Gregorelli A, et al. Autophagy induced by p53-reactivating molecules protects pancreatic cancer cells from apoptosis. Apoptosis. 2013;18:337–46.

    Article  CAS  PubMed  Google Scholar 

  23. Guo X, Wang M, Jiang J, Xie C, Peng F, Li X, et al. Balanced Tiam1-Rac1 and RhoA drives proliferation and invasion of pancreatic cancer cells. Mol Cancer Res. 2013;11:230–9.

    Article  CAS  PubMed  Google Scholar 

  24. Timpson P, McGhee EJ, Morton JP, von Kriegsheim A, Schwarz JP, Karim SA, et al. Spatial regulation of RhoA activity during pancreatic cancer cell invasion driven by mutant p53. Cancer Res. 2011;71:747–57.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Jha S, Dutta A. RVB1/RVB2: running rings around molecular biology. Mol Cell. 2009;34:521–33.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Gabrovska PN, Smith RA, Haupt LM, Griffiths LR. Investigation of two Wnt signalling pathway single nucleotide polymorphisms in a breast cancer-affected Australian population. Twin Res Hum Genet. 2011;14:562–7.

    Article  PubMed  Google Scholar 

  27. Singh AP, Bafna S, Chaudhary K, Venkatraman G, Smith L, Eudy JD, et al. Genome-wide expression profiling reveals transcriptomic variation and perturbed gene networks in androgen-dependent and androgen-independent prostate cancer cells. Cancer Lett. 2008;259:28–38.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Ostenfeld MS, Bramsen JB, Lamy P, Villadsen SB, Fristrup N, Sorensen KD, et al. miR-145 induces caspase-dependent and -independent cell death in urothelial cancer cell lines with targeting of an expression signature present in Ta bladder tumors. Oncogene. 2010;29:1073–84.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

We thank Professor David A Tuveson and Dr. Sunil R. Hingorani for genetically engineering mouse models of PanIN and PDAC, cell lines SH-PAN and DT-PCa, and helpful advices. Supported in part by National Natural Science Foundation of China (81272263, 30971130, 30672385), and Grant of Science and Technology Commission of Shanghai Municipality (11JC1407601).

This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weiyan Yao or Lifu Wang.

Additional information

Q. Wang, H. Jiang and C. Ping contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure S1

Validation of the differentially expressed mRNAs in Wnt pathway. Real-time PCR was employed. Results represented the mean values and the standard deviations of three independent experiments. The validation results of the 12 mRNAs showed that the microarray data correlated well with the real-time PCR results. (JPEG 36 kb)

High resolution image (TIFF 55 kb)

Supplementary Table S1

The differentially expressed lncRNAs in DT-PCa cells compared to SH-SAN cells (DOC 896 kb)

Supplementary Table S2

The differentially expressed mRNAs in DT-PCa cells compared to SH-SAN cells (DOC 2082 kb)

Supplementary Table S3

Pathway analysis according to th differentially expressed genes (DOC 34 kb)

Supplementary Table S4

The detail description of the selected lncRNAs (DOC 32 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Q., Jiang, H., Ping, C. et al. Exploring the Wnt Pathway-Associated LncRNAs and Genes Involved in Pancreatic Carcinogenesis Driven by Tp53 Mutation. Pharm Res 32, 793–805 (2015). https://doi.org/10.1007/s11095-013-1269-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-013-1269-z

KEY WORDS

Navigation