Skip to main content

Advertisement

Log in

Quantitative Glucose and ATP Sensing in Mammalian Cells

  • Expert Review
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

The functioning and survival of mammalian cells requires an active energy metabolism. Metabolic dysfunction plays an important role in many human diseases, including diabetes, cancer, inherited mitochondrial disorders, and metabolic syndrome. The monosaccharide glucose constitutes a key source of cellular energy. Following its import across the plasma membrane, glucose is converted into pyruvate by the glycolysis pathway. Pyruvate oxidation supplies substrates for the ATP-generating mitochondrial oxidative phosphorylation (OXPHOS) system. To gain cell-biochemical knowledge about the operation and regulation of the cellular energy metabolism in the healthy and diseased state, quantitative knowledge is required about (changes in) metabolite concentrations under (non) steady-state conditions. This information can, for instance, be used to construct more realistic in silico models of cell metabolism, which facilitates understanding the consequences of metabolic dysfunction as well as on- and off-target effects of mitochondrial drugs. Here we review the current state-of-the-art live-cell quantification of two key cellular metabolites, glucose and ATP, using protein-based sensors. The latter apply the principle of FRET (fluorescence resonance energy transfer) and allow measurements in different cell compartments by fluorescence microscopy. We further summarize the properties and applications of the FRET-based sensors, their calibration, pitfalls, and future perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

2-DG:

2-Deoxy-D-glucose

A:

fluorescence acceptor molecule

AcCoA:

acetyl-coenzyme A

ADP:

adenoside diphosphate

AMP:

adenosine monophosphate

AMPK:

AMP-activated protein kinase

ANT:

adenine nucleotide translocator

ATP:

adenoside triphosphate

D:

fluorescence donor molecule

DNP:

2,4-Dinitrophenol

ECFP:

enhanced cyan fluorescent protein

ER:

endoplasmic reticulum

EYFP:

enhanced yellow fluorescent protein

FCCP:

carbonyl cyanide-p-trifluoromethoxyphenylhydrazone

FRET:

fluorescence resonance energy transfer

FS:

fractional saturation

G6P:

glucose-6-phosphate

GFP:

green fluorescent protein

GGBP:

glucose galactose-binding protein

GK:

glucokinase

GLUT:

glucose transporter

HK:

hexokinase

IAA:

iodoacetate

LDH:

lactate dehydrogenase

OFP:

orange fluorescent protein

OXPHOS:

oxidative phosphorylation

PBP:

periplasmic binding protein

PDH:

pyruvate dehydrogenase

PFK:

phosphofructokinase

PK:

pyruvate kinase

PKC:

protein kinase C

PM:

plasma membrane

PPP:

pentose phosphate pathway

ROS:

reactive oxygen species

SGLT:

sodium-dependent glucose cotransporters

SLO:

streptolysin O

SNR:

signal-to-noise ratio

TCA:

tricarboxylic acid

TPA:

phorbol 12-myristate 13-acetate

VDAC:

voltage-dependent anion channel

REFERENCES

  1. Thorens B, Mueckler M. Glucose transporters in the 21st century. Am J Physiol Endocrinol Metab. 2010;298:E141–5.

    Article  PubMed  CAS  Google Scholar 

  2. Bittner CX, Loaiza A, Ruminot I, Larenas V, Sotelo-Hitschfeld T, Gutiérrez R, Córdova A, Valdebenito1 R, Frommer WB, Barros LF. High resolution measurement of the glycolytic rate. Front Neuroenergetics. 2010;15(2). pii: 26.

    Google Scholar 

  3. Blodgett DM, De Zutter JK, Levine KB, Karim P, Carruthers A. Structural Basis of GLUT1 Inhibition by Cytoplasmic ATP. J Gen Physiol. 2007;130(2):157–68.

    Article  PubMed  CAS  Google Scholar 

  4. Klip A, Tsakiridis T, Marette A, Ortiz PA. Regulation of expression of glucose transporters by glucose: a review of studies in vivo and in cell cultures. FASEB J. 1994;8(1):43–53.

    PubMed  CAS  Google Scholar 

  5. John SA, Ottolia M, Weiss JN, Ribalet B. Dynamic modulation of intracellular glucose imaged in single cells using a FRET-based glucose nanosensor. Pflugers Arch. 2008;456(2):307–22.

    Article  PubMed  CAS  Google Scholar 

  6. Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324:1029–33.

    Article  PubMed  CAS  Google Scholar 

  7. Gouyon F, Caillaud L, Carriere V, Klein C, Dalet V, Citadelle D, et al. Simple-sugar meals target GLUT2 at enterocyte apical membranes to improve sugar absorption: a study in GLUT2-null mice. J Physiol. 2003;552(Pt 3):823–32.

    Article  PubMed  CAS  Google Scholar 

  8. Tobin V, Le Gall M, Fioramonti X, Stolarczyk E, Blazquez AG, Klein C, et al. Insulin internalizes GLUT2 in the enterocytes of healthy but not insulin-resistant mice. J Physiol. 2003;552(Pt 3):823–32.

    Google Scholar 

  9. Fehr M, Takanaga H, Ehrhardt DW, Frommer WB. Evidence for high-capacity bidirectional glucose transport across the endoplasmic reticulum membrane by genetically encoded fluorescence resonance energy transfer nanosensors. Mol Cell Biol. 2005;25(24):11102–12.

    Article  PubMed  CAS  Google Scholar 

  10. Rencurel F, Waeber G, Antoine B, Rocchiccioli F, Maulard P, Girard J, et al. Requirement of glucose metabolism for regulation of glucose transporter type 2 (GLUT2) gene expression in liver. Biochem J. 1996;314(Pt 3):903–9.

    PubMed  CAS  Google Scholar 

  11. Simpson IA, Dwyer D, Malide D, Moley KH, Travis A, Vannucci SJ. The facilitative glucose transporter GLUT3: 20 years of distinction. Am J Physiol Endocrinol Metab. 2008;295(2):E242–253.

    Article  PubMed  CAS  Google Scholar 

  12. Mohan S, Sheena A, Poulose N, Anilkumar G. Molecular dynamics simulation studies of GLUT4: substrate-free and substrate-induced dynamics and ATP-mediated glucose transport inhibition. PLoS One. 2010;5(12):e14217.

    Article  PubMed  CAS  Google Scholar 

  13. Robey RB, Hay N. Mitochondrial hexokinases: guardians of the mitochondria. Cell Cycle. 2005;4(5):654–8.

    Article  PubMed  CAS  Google Scholar 

  14. Cairns RA, Harris IS, Mak TW. Regulation of cancer cell metabolism. Nat Rev Cancer. 2011;11:85–95.

    Article  PubMed  CAS  Google Scholar 

  15. Koopman WJH, Nijtmans LG, Dieteren CEJ, Roestenberg P, Valsecchi F, Smeitink JAM, et al. Mammalian mitochondrial complex I: Biogenesis, regulation and reactive oxygen species generation. Antioxid Redox Signal. 2010;12:1431–70.

    Article  PubMed  CAS  Google Scholar 

  16. Kahn BB, Alquier T, Carling D, Hardie DG. AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab. 2005;1(1):15–25.

    Article  PubMed  CAS  Google Scholar 

  17. Griffiths EJ, Rutter GA. Mitochondrial calcium as a key regulator of mitochondrial ATP production in mammalian cells. Biochim Biophys Acta. 2009;1787(11):1324–33.

    Article  PubMed  CAS  Google Scholar 

  18. Fehr M, Lalonde S, Lager I, Wolff MW, Frommer WB. In vivo imaging of the dynamics of glucose uptake in the cytosol of cos-7 cells by fluorescent nanosensors. J Biol Chem. 2003;278(21):19127–33.

    Article  PubMed  CAS  Google Scholar 

  19. Tsuboi T, Lippiat JD, Ashcroft FM, Rutter GA. ATP-dependent interaction of the cytosolic domains of the inwardly rectifying K+ channel Kir6.2 revealed by fluorescence resonance energy transfer. Proc Natl Acad Sci U S A. 2004;101(1):76–81.

    Article  PubMed  CAS  Google Scholar 

  20. Deuschle K, Okumoto S, Mehr F, Looger L, Kozhukh L, Frommer WB. Construction and optimization of a family of genetically encoded metabolite sensors by semirational protein engineering. Protein Sci. 2005;14(9):2304–14.

    Article  PubMed  CAS  Google Scholar 

  21. Deuschle K, Fehr M, Hilpert M, Lager I, Lalonde S, Looger LL, et al. Genetically encoded sensors for metabolites. Cytometry A. 2005;64(1):3–9.

    PubMed  Google Scholar 

  22. Deuschle K, Chaudhuri B, Okumoto S, Lager I, Lalonde S, Frommer WB. Rapid metabolism of glucose detected with FRET glucose nanosensors in epidermal cells and intact roots of Arabidopsis RNA-silencing mutants. Plant Cell. 2006;18(9):2314–25.

    Article  PubMed  CAS  Google Scholar 

  23. Okumoto S, Takanaga H, Frommer WB. Quantitative imaging for discovery and assembly of the metabo-regulome. New Phytol. 2008;180(2):271–95.

    Article  PubMed  CAS  Google Scholar 

  24. Berg J, Hung YP, Yellen G. A genetically encoded fluorescent reporter of ATP:ADP ratio. Nat Methods. 2009;6(2):161–6.

    Article  PubMed  CAS  Google Scholar 

  25. Imamura H, Nhat KP, Togawa H, Saito K, Iino R, Kato-Yamada Y, et al. Visualization of ATP levels inside single living cells with fluorescence resonance energy transfer-based genetically encoded indicators. Proc Natl Acad Sci U S A. 2009;106(37):15651–6.

    Article  PubMed  CAS  Google Scholar 

  26. Lakowicz JR. Principles of fluorescence spectroscopy, chapter 13. 3rd ed. New York: Springer; 2006. p. 445–6.

    Book  Google Scholar 

  27. Nagai T, Yamada S, Tominaga T, Ichikawa M, Miyawaki A. Expanded dynamic range of fluorescent indicators for Ca(2+) by circularly permuted yellow fluorescent proteins. Proc Natl Acad Sci U S A. 2004;101(29):10554–9.

    Article  PubMed  CAS  Google Scholar 

  28. Griesbeck O, Baird GS, Campbell RE, Zacharias DA, Tsien RY. Reducing the environmental sensitivity of yellow fluorescent protein. Mechanism and applications. J Biol Chem. 2001;276(31):29188–94.

    Article  PubMed  CAS  Google Scholar 

  29. Takanaga H, Chaudhuri B, Frommer WB. GLUT1 and GLUT9 as major contributors to glucose influx in HepG2 cells identified by a high sensitivity intramolecular FRET glucose sensor. Biochim Biophys Acta. 2008;1778(4):1091–9.

    Article  PubMed  CAS  Google Scholar 

  30. Nagai T, Ibata K, Park ES, Kubota M, Mikoshiba K, Miyawaki A. A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat Biotechnol. 2002;20(1):87–90.

    Article  PubMed  CAS  Google Scholar 

  31. Takanaga H, Frommer WB. Facilitative plasma membrane transporters function during ER transit. FASEB J. 2010;24(8):2849–58.

    Article  PubMed  CAS  Google Scholar 

  32. Nagai T, Sawano A, Park ES, Miyawaki A. Circularly permuted green fluorescent proteins engineered to sense Ca2+. Proc Natl Acad Sci USA. 2001;98:3197–202.

    Article  PubMed  CAS  Google Scholar 

  33. Yagi H, Kajiwara N, Tanaka H, Tsukihara T, Kato-Yamada Y, Yoshida M, et al. Structures of the thermophilic F1-ATPase epsilon subunit suggesting ATP-regulated arm motion of its C-terminal domain in F1. Proc Natl Acad Sci USA. 2007;104(27):11233–8.

    Article  PubMed  CAS  Google Scholar 

  34. Willemse M, Janssen E, de Lange F, Wieringa B, Fransen J. ATP and FRET—a cautionary note. Nat Biotechnol. 2007;25(2):170–2.

    Article  PubMed  CAS  Google Scholar 

  35. Borst JW, Willemse M, Slijkhuis R, van der Krogt G, Laptenok SP, Jalink K, et al. ATP changes the fluorescence lifetime of cyan fluorescent protein via an interaction with His148. PLoS One. 2010;5(11):e13862.

    Article  PubMed  Google Scholar 

  36. Zacharias DA, Violin JD, Newton AC, Tsien RY. Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. Science. 2002;296(5569):913–6.

    Article  PubMed  CAS  Google Scholar 

  37. Kotera I, Iwasaki T, Imamura H, Noji H, Nagai T. Reversible dimerization of Aequorea victoria fluorescent proteins increases the dynamic range of FRET-based indicators. ACS Chem Biol. 2010;5(2):215–22.

    Article  PubMed  CAS  Google Scholar 

  38. Nakano M, Imamura H, Nagai T, Noji H. Ca2+ regulation of mitochondrial ATP synthesis visualized at the single cell level. ACS Chem Biol. 2011 (in press).

  39. Tsien RY, Rink TJ, Poenie M. Measurement of cytosolic free Ca2+ in individual small cells using fluorescence microscopy with dual excitation wavelengths. Cell Calcium. 1985;6(1–2):145–57.

    Article  PubMed  CAS  Google Scholar 

  40. Dieteren CEJ, Willems PHGM, Vogel RO, Swarts HG, Fransen J, Roepman R, et al. Subunits of mitochondrial complex I exist as part of matrix- and membrane-associated subcomplexes in living cells. J Biol Chem. 2008;283(50):34753–61.

    Article  PubMed  CAS  Google Scholar 

  41. Wallace KB. Mitochondrial off targets of drug therapy. Tr Pharm Sci. 2010;29:361–6.

    Article  Google Scholar 

  42. Koopman WJH, Distelmaier F, Esseling JJ, Smeitink JAM, Willems PHGM. Computer-assisted live cell analysis of mitochondrial membrane potential, morphology and calcium handling. Methods. 2008;46:304–11.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS & DISCLOSURES

This work was supported by an equipment grant of NWO (Netherlands Organization for Scientific Research, No: 911-02-008), the Dutch Ministry of Economic Affairs (Innovative Onderzoeks Projecten (IOP) Grant: #IGE05003), and the CSBR (Centres for Systems Biology Research) initiative from NWO (No: CSBR09/013V). We are grateful to Dr. J.J. Esseling & Mr. A. Klymov (Dept. of Biochemistry, NCMLS) for performing ATeam microscopy experiments. We apologize to those authors whose articles we were unable to cite because of space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Werner J. H. Koopman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liemburg-Apers, D.C., Imamura, H., Forkink, M. et al. Quantitative Glucose and ATP Sensing in Mammalian Cells. Pharm Res 28, 2745–2757 (2011). https://doi.org/10.1007/s11095-011-0492-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-011-0492-8

KEY WORDS

Navigation