Skip to main content
Log in

Solubility of Small-Molecule Crystals in Polymers: d-Mannitol in PVP, Indomethacin in PVP/VA, and Nifedipine in PVP/VA

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Objective

Amorphous pharmaceuticals, a viable approach to enhancing bioavailability, must be stable against crystallization. An amorphous drug can be stabilized by dispersing it in a polymer matrix. To implement this approach, it is desirable to know the drug’s solubility in the chosen polymer, which defines the maximal drug loading without risk of crystallization. Measuring the solubility of a crystalline drug in a polymer is difficult because the high viscosity of polymers makes achieving solubility equilibrium difficult.

Method

Differential Scanning Calorimetry (DSC) was used to detect dissolution endpoints of solute/polymer mixtures prepared by cryomilling. This method was validated against other solubility-indicating methods.

Results

The solubilities of several small-molecule crystals in polymers were measured for the first time near the glass transition temperature, including d-mannitol (β polymorph) in PVP, indomethacin (γ polymorph) in PVP/VA, and nifedipine (α polymorph) in PVP/VA.

Conclusion

A DSC method was developed for measuring the solubility of crystalline drugs in polymers. Cryomilling the components prior to DSC analysis improved the uniformity of the mixtures and facilitated the determination of dissolution endpoints. This method has the potential of providing useful data for designing physically stable formulations of amorphous drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. M. Vasanthavada, W. Tong, Y. Joshi, and M. S. Kislalioglu. Phase behavior of amorphous molecular dispersions I: determination of the degree and mechanism of solid solubility. Pharm. Res. 21:1598–1606 (2004).

    Article  PubMed  CAS  Google Scholar 

  2. M. Vasanthavada, W. Tong, Y. Joshi, and M. S. Kislalioglu. Phase behavior of amorphous molecular dispersions II: role of hydrogen bonding in solid solubility and phase separation kinetics. Pharm. Res. 22:440–448 (2004).

    Article  Google Scholar 

  3. P. J. Marsac, S. L. Shamblin, and L. S. Taylor. Theoretical and practical approaches for prediction of drug–polymer miscibility and solubility. Pharm. Res. 23:2417–2426 (2006).

    Article  PubMed  CAS  Google Scholar 

  4. P. J. Marsac, T. Li, and L. S. Taylor. Estimation of drug–polymer miscibility and solubility in amorphous solid dispersions using experimentally determined interaction parameters. Pharm. Res. in press (2008).

  5. R. Mohan, H. Lorenz, and A. S. Myerson. Solubility measurement using differential scanning calorimetry. Ind. Eng. Chem. Res. 41:4854–4862 (2002).

    Article  CAS  Google Scholar 

  6. K. Park, J. M. B. Evans, and A. S. Myerson. Determination of solubility of polymorphs using differential scanning calorimetry. Cryst. Growth Des. 3:991–995 (2003).

    Article  CAS  Google Scholar 

  7. R. Tamagawa, W. Martins, S. Derenzo, A. Bernardo, M. Rolemberg, P. Carvan, and M. Giulietti. Short-cut method to predict the solubility of organic molecules in aqueous and nonaqueous solutions by differential scanning calorimetry. Cryst. Growth Des. 6:313–320 (2006).

    Article  CAS  Google Scholar 

  8. V. Andronis, and G. Zografi. Crystal nucleation and growth of indomethacin polymorphs from the amorphous state. J. Non-Cryst. Solids. 271:236–248 (2000).

    Article  CAS  Google Scholar 

  9. V. Andronis, and G. Zografi. Molecular mobility of supercooled amorphous indomethacin, determined by dynamic mechanical analysis. Pharm. Res. 14:410–419 (1997).

    Article  PubMed  CAS  Google Scholar 

  10. M. Yoshioka, B. C. Hancock, and G. Zografi. Crystallization of indomethacin from the amorphous state below and above its glass transition temperature. J. Pharm. Sci. 83:1700–1705 (1994).

    Article  PubMed  CAS  Google Scholar 

  11. T. Wu, and L. Yu. Origin of enhanced crystal growth kinetics near Tg probed with indomethacin polymorphs. J. Phys. Chem. B. 110:15694–15699 (2006).

    Article  PubMed  CAS  Google Scholar 

  12. S. R. Vippagunta, K. A. Maul, S. Tallavajhala, and D. J. W. Grant. Solid-state characterization of nifedipine solid dispersions. Int. J. Pharm. 236:111–123 (2002).

    Article  PubMed  CAS  Google Scholar 

  13. N. Zajc, A. Obreza, M. Bele, and S. Srcic. Physical properties and dissolution behaviour of nifedipine/mannitol solid dispersions prepared by hot melt method. Int. J. Pharm. 291:51–58 (2005).

    Article  PubMed  CAS  Google Scholar 

  14. I. Sugimoto, A. Kuchiki, and H. Nakagawa. Stability of nifedipine–polyvinylpyrrolidone coprecipitate. Chem. Pharm. Bull. 29:1715–1723 (1981).

    PubMed  CAS  Google Scholar 

  15. H. Ishida, T. Wu, and L. Yu. Sudden rise of crystal growth rate of nifedipine near Tg without and with polyvinylpyrrolidone. J. Pharm. Sci. 96:1131–1138 (2007).

    Article  PubMed  CAS  Google Scholar 

  16. L. S. Taylor, and G. Zografi. Spectroscopic characterization of interactions between PVP and indomethacin in amorphous molecular dispersions. Pharm. Res. 14:1691–1698 (1997).

    Article  PubMed  CAS  Google Scholar 

  17. T. Matsumoto, and G. Zografi. Physical properties of solid molecular dispersions of indomethacin with poly(vinylpyrrolidone) and poly(vinylpyrrolidone-co-vinyl-acetate) in relation to indomethacin crystallization. Pharm. Res. 16:1722–1728 (1999).

    Article  PubMed  CAS  Google Scholar 

  18. T. Miyazaki, S. Yoshioka, Y. Aso, and S. Kojima. Ability of polyvinylpyrrolidone and polyacrylic acid to inhibit the crystallization of amorphous acetaminophen. J. Pharm. Sci. 93:2710–2717 (2004).

    Article  PubMed  CAS  Google Scholar 

  19. K. J. Crowley, and G. Zografi. Cryogenic grinding of indomethacin polymorphs and solvates: assessment of amorphous phase formation and amorphous phase physical stability. J. Pharm. Sci. 91:492–507 (2002).

    Article  PubMed  CAS  Google Scholar 

  20. L. Yu, D. S. Mishra, and D. R. Rigsbee. Determination of the glass properties of d-mannitol using sorbitol as an impurity. J. Pharm. Sci. 87:774–777 (1998).

    Article  PubMed  CAS  Google Scholar 

  21. L. Yu, J. Huang, and K. J. Jones. Measuring free-energy difference between crystal polymorphs through eutectic melting. J. Phys. Chem. B. 109:19915–19922 (2005).

    Article  PubMed  CAS  Google Scholar 

  22. L. Yu. Nucleation of one polymorph by another. J. Am. Chem. Soc. 125:6380–6381 (2003).

    Article  PubMed  CAS  Google Scholar 

  23. J. Tao, and L. Yu. Kinetics of cross-nucleation between polymorphs. J. Phys. Chem. B. 110:7097–7101 (2006).

    Google Scholar 

  24. M. K. Mapes, S. F. Swallen, and M. D. Ediger. Self-diffusion of supercooled o-terphenyl near the glass transition temperature. J. Phys. Chem. B. 110:507–511 (2006).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We thank Abbott Laboratories for supporting this work and Dr. Feng Qian of BMS for the helpful discussions about the T end/T g diagrams.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Geoff G. Z. Zhang or Lian Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tao, J., Sun, Y., Zhang, G.G.Z. et al. Solubility of Small-Molecule Crystals in Polymers: d-Mannitol in PVP, Indomethacin in PVP/VA, and Nifedipine in PVP/VA. Pharm Res 26, 855–864 (2009). https://doi.org/10.1007/s11095-008-9784-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-008-9784-z

KEY WORDS

Navigation