Skip to main content
Log in

Production scheduling in a market-driven foundry: a mathematical programming approach versus a project scheduling metaheuristic algorithm

  • Published:
Optimization and Engineering Aims and scope Submit manuscript

Abstract

This paper describes a real problem in a market-driven medium sized foundry delivering a wide range of castings to different markets. The problem consists of finding an efficient production plan to schedule the different processes (moulding, furnacing, cutting, tooling, etc.) needed to the manufacture of the pieces. Different objectives and resources and technical constraints must be taken into account. To solve this problem we have first developed a more classical integer linear programming approach based on a rolling horizon strategy. The most innovative contribution of the paper is that it models the problem as a project scheduling problem. Based on this model we present a metaheuristic algorithm that adapts techniques from the area. Computational experiments comparing both approaches are provided on instances created by a generator simulating real instances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Araujo SA, Arenales MN, Clark AR (2008) Lot sizing and furnace scheduling in small foundries. Comput Oper Res 35:916–932

    Article  MATH  Google Scholar 

  • Ballestín F, Valls V, Quintanilla M (2008) Preemption in resource-constrained project scheduling. Eur J Oper Res 189:1136–1152

    Article  MATH  Google Scholar 

  • Ballestín F (2007) When it is worthwhile to work with the stochastic RCPSP? J Sched 10(3):153–166

    Article  MathSciNet  MATH  Google Scholar 

  • Blazewicz J, Lenstra JK, Rinooy Kan AHG (1983) Scheduling subject to resource constraints: Classification and complexity. Discrete Appl Math 5:11–24

    Article  MathSciNet  MATH  Google Scholar 

  • Demeulemeester E, Herroelen W (2002) Project scheduling—a research handbook. Kluwer Academic, Boston

    MATH  Google Scholar 

  • Drexl A (1991) Scheduling of project networks by job assignment. Manag Sci 37:1590–1602

    Article  MATH  Google Scholar 

  • Du J, Leung JYT (1990) Minimizing total tardiness on one machine is NP-hard. Math Oper Res 15(3):483–485

    Article  MathSciNet  MATH  Google Scholar 

  • Garey MR, Johnson DS, Sethi R (1976) The complexity of flowshop and jobshop scheduling. Math Oper Res 1:117–129

    Article  MathSciNet  MATH  Google Scholar 

  • Goldberg DE (1989) Genetic algorithms in search, optimization, and machine learning. Addison-Wesley, Reading

    MATH  Google Scholar 

  • Gravel M, Price WL, Cagné C (2002) Scheduling continuous casting of aluminium using a multiple objective ant colony optimization metaheuristic. Eur J Oper Res 143:218–229

    Article  MATH  Google Scholar 

  • Hartmann S (1998) A competitive genetic algorithm for resource-constrained project scheduling. Nav Res Logist 45:733–750

    Article  MathSciNet  MATH  Google Scholar 

  • Hartmann S (2001) Project scheduling with multiple modes: a genetic algorithm. Ann Oper Res 102:111–135

    Article  MathSciNet  MATH  Google Scholar 

  • Holland HJ (1975) Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor

    Google Scholar 

  • Kolisch R (1995) Project scheduling under resource constraints—efficient heuristics for several problem classes. Phisica, Heidelberg

    Google Scholar 

  • Kolisch R, Hartmann S (2006) Experimental investigation of heuristics for resource-constrained project scheduling: an update. Eur J Oper Res 174(1):23–37

    Article  MATH  Google Scholar 

  • Kolisch R, Padman R (2001) An integrated survey of deterministic project scheduling. Omega 29:249–272

    Article  Google Scholar 

  • Maes J, McClain JO, Van Wassenhove LN (1991) Multilevel capacitated lotsizing complexity and LP based heuristic. Eur J Oper Res 53:131–148

    Article  MATH  Google Scholar 

  • Méndez CA et al. (2006) State-of-the-art review of optimization methods for short-term scheduling of batch processes. Comput Chem Eng 30(6–7):913–946

    Article  Google Scholar 

  • Neumann K, Schwindt C (2002) Exact and truncated branch-and-bound procedures for resource-constrained project scheduling with discounted cash flows and general temporal constraints. Cent Eur J Oper Res 10:357–380

    MathSciNet  MATH  Google Scholar 

  • Neumann K, Schwindt C, Zimmermann J (2003) Project scheduling with time windows and scarce resources. Springer, Berlin

    Book  MATH  Google Scholar 

  • Nonas SL, Olsen KA (2005) Optimal and heuristic solutions for a scheduling problem arising in a foundry. Comput Oper Res 32:2351–2382

    Article  MATH  Google Scholar 

  • Pinedo M (2008) Scheduling: theory, algorithms, and systems. Prentice Hall, New York

    MATH  Google Scholar 

  • Pritsker AAB, Watters LJ, Wolfe PM (1969) Multi project scheduling with limited resources: a zero-one programming approach. Manag Sci 16:93–108

    Article  Google Scholar 

  • Santos-Meza E, Oliveira M, Nereu M (2002) A lot-sizing problem in an automated foundry. Eur J Oper Res 139:490–500

    Article  MATH  Google Scholar 

  • Schwindt C, Trautmann N (2003) Scheduling the production of rolling ingots: industrial context, model and solution method. Int Trans Oper Res 10:547–563

    Article  MathSciNet  MATH  Google Scholar 

  • Slowinski R, Soniewicki B, Weglarz J (1994) DSS for multiobjective project scheduling. Eur J Oper Res 79(2):220–229

    Article  MATH  Google Scholar 

  • Sule DR (2008) Production planning and industrial scheduling, 2nd edn. CRC Press/Taylor & Francis, Boca Raton. ISBN 978-1-4200-4420-1

    MATH  Google Scholar 

  • Tang L, Liu G (2007) A mathematical programming model and solution for scheduling production orders in Shangai Baoshan Iron and Steel Complex. Eur J Oper Res 182:1453–1468

    Article  MATH  Google Scholar 

  • Tang L, Liu J, Rong A, Yang Z (2001) A review of planning and scheduling systems and methods for integrated steel production. Eur J Oper Res 133:1–20

    Article  MATH  Google Scholar 

  • Tseng C, Liao C (2008) A particle swarm optimization algorithm for hybrid flow-shop scheduling with multiprocessor tasks. Int J Prod Res 46(17):4655–4670

    Article  MATH  Google Scholar 

  • Valls V, Ballestín F, Quintanilla S (2005) Justification and RCPSP: A technique that pays. Eur J Oper Res 165:375–386

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro M. Mateo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ballestín, F., Mallor, F. & Mateo, P.M. Production scheduling in a market-driven foundry: a mathematical programming approach versus a project scheduling metaheuristic algorithm. Optim Eng 13, 663–687 (2012). https://doi.org/10.1007/s11081-011-9157-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11081-011-9157-z

Keywords

Navigation