Skip to main content
Log in

Global dynamics of autonomous and nonautonomous SI epidemic models with nonlinear incidence rate and feedback controls

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper discusses autonomous and nonautonomous epidemic models with nonlinear incidence rate of saturated mass action and feedback controls. The global asymptotic stability of disease-free equilibrium and the endemic equilibrium of the autonomous system is established using suitable Lyapunov functional. It is shown that by choosing suitable values of feedback control variables, one can make the disease endemic or extinct as time evolves. Moreover, the effect of coefficient of inhibition on the persistence of disease is also discussed. We discuss the permanence, existence, uniqueness and asymptotic stability of an almost periodic solution of the model. The analytical results obtained in this paper are illustrated with the help of numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Abbas, S., Banerjee, M., Hungerbuhler, N.: Existence, uniqueness and stability analysis of allelopathic stimulatory phytoplankton model. J. Math. Anal. Appl. 367, 249–259 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Abbas, S., Sen, M., Banerjee, M.: Almost periodic solution of a non-autonomous model of phytoplankton allelopathy. Nonlinear Dyn. 67, 203–214 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bohr, H.: Almost periodic functions. Chelsea, reprint (1947)

  4. Bohr, H.: On the theory of almost periodic functions. Acta Math. 45, 101–214 (1925)

    Article  Google Scholar 

  5. Brauer, F., Chavez, C.C.: Mathematical Models in Population Biology and Epidemiology. Springer, New York (2001)

    Book  MATH  Google Scholar 

  6. Capasso, V., Serio, G.: A generalization of the Kermack–Mckendric deterministic epidemic model. Math. Biosci. 42, 43–61 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, F.: On a nonlinear nonautonomous predator-prey model with diffusion and distributed delay. J. Comput. Appl. Math. 180, 33–49 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, F.D.: Almost periodic solution of the non-autonomous two species competitive model with stage structure. Appl. Math. Comput. 181, 685–693 (2006)

    MathSciNet  MATH  Google Scholar 

  9. Chen, F.: The permanence and global attractivity of Lotka–Volterra competition system with feedback controls. Nonlinear Anal. Real World Appl. 7, 133–143 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen, F.: Permanence in nonautonomous multi-species predator-prey system with feedback controls. Appl. Math. Comput. 173, 694–709 (2006)

    MathSciNet  MATH  Google Scholar 

  11. Chen, F.D., Li, Z., Chen, X., Jitka, L.: Dynamic behaviours of a delay differential equation model of plankton allelopathy. J. Comput. Appl. Math. 206, 733–754 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chen, L., Sun, J.: Global stability of an SI epidemic model with feedback controls. Appl. Math. Lett. 28, 53–55 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chesson, P.: Understanding the role of environment variation in population and community dynamics. Theor. Popul. Biol. 64, 253–254 (2003)

    Article  Google Scholar 

  14. Cui, J., Takeuchi, Y.: Permanence, extinction and periodic solution of predator-prey system with Beddington–DeAngelis functional response. J. Math. Anal. Appl. 317, 464–474 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ding, H.S., N’Guérékata, G.M.: A note on the existence of positive bounded solutions for an epidemic model. Appl. Math. Lett. 26, 881–885 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dry, S., Leach, M.: Epidemics: Science, Governance, and Social Justice. Earthsacan, London (2010)

    Google Scholar 

  17. Fan, M., Kuang, Y.: Dynamics of a nonautonomous predator-prey system with Beddington–DeAngelis functional response. J. Math. Anal. Appl. 295, 15–39 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Fink, A.M.: Almost periodic differential equations. Lecture Notes in Mathematics, vol. 377. Springer, Berlin (1974)

  19. Gopalsamy, K., Weng, P.-X.: Feedback regulation of logistic growth. Int. J. Math. Math. Sci. 16, 177–192 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  20. Guihua, L., Wang, W.: Bifurcation analysis of an epidemic model with nonlinear incidence. Appl. Math. Comput. 214, 411–423 (2009)

    MathSciNet  MATH  Google Scholar 

  21. Heesterbeek, J.A.P.: Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation. Wiley, Chicago (2000)

    MATH  Google Scholar 

  22. Hethcote, H.W.: The mathematics of infectious diseases. SIAM Rev. 42, 599–653 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hethcote, H.W., Van den Driessche, P.: Some epidemiological models with nonlinear incidence. J. Math. Biol. 29, 271–287 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hethcote, H.W., Levin, S.A.: Periodicity in Epidemiological Models, Applied Mathematical Ecology. Springer, Berlin (1989)

    Google Scholar 

  25. Lahrouz, A., Omari, L., Kiouach, D.: Global analysis of a deterministic and stochastic nonlinear SIRS epidemic model. Nonlinear Anal. Model. Control 16, 59–76 (2011)

    MathSciNet  MATH  Google Scholar 

  26. Lefschetz, S.: Stability of Nonlinear Control System. Academic Press, New York (1965)

    MATH  Google Scholar 

  27. Liao, X., Zhou, S., Chen, Y.: Permanence and global stability in a discrete n-species competition system with feedback controls. Nonlinear Anal. Real World Appl. 9, 1661–1671 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lin, X., Chen, F.: Almost periodic solution for a Volterra model with mutual interference and Beddington–DeAngelis functional response. Appl. Math. Comput. 214, 548–556 (2009)

    MathSciNet  MATH  Google Scholar 

  29. Liu, B., Duan, Y., Luan, S.: Dynamics of an SI epidemic model with external effects in a polluted environment. Nonlinear Anal. Real World Appl. 13, 27–38 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Nakata, Y., Kuniya, T.: Global dynamics of a class of SEIRS epidemic models in a periodic environment. J. Math. Anal. Appl. 363, 230–237 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Rinaldi, S., Muratori, S., Kuznetsov, Y.: Multiple attractors, catastrophe and chaos in seasonally perturbed predator-prey communities. Bull. Math. Biol. 55, 15–35 (1993)

    Article  MATH  Google Scholar 

  32. Ruan, S., Wang, W.: Dynamical behavior of an epidemic model with a nonlinear incidence rate. J. Differ. Equ. 188, 135–163 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  33. Sun, G.-Q., Jin, Z., Liu, Q.-X., Li, L.: Pattern formation in a spatial SI model with non-linear incidence rates. J. Stat. Mech. Theory Exp. 11, P11011 (2007)

    Article  Google Scholar 

  34. Sun, G.-Q., Jin, Z., Liu, Q.-X., Li, L.: Chaos induced by breakup of waves in a spatial epidemic model with non-linear incidence rates. J. Stat. Mech. Theory Exp. 8, P08011 (2008)

    Google Scholar 

  35. Sun, G.-Q., Liu, Q.X., Jin, Z., Chakraborty, A., Li, B.L.: Influence of infection rate and migration on extinction of disease in spatial epidemics. J. Theor. Biol. 264, 95–103 (2010)

    Article  MathSciNet  Google Scholar 

  36. Sun, G.-Q.: Pattern formation of an epidemic model with diffusion. Nonlinear Dyn. 69, 1097–1104 (2012)

    Article  MathSciNet  Google Scholar 

  37. Tripathi, J.P., Abbas, S.: Almost periodicity of a modified leslie-gower predator-prey system with crowley-martin functional response. In: Mathematical Analysis and Its Applications, pp. 309–317. Springer India (2015)

  38. Tripathi, J.P., Abbas, S., Thakur, M.: Stability analysis of two prey one predator model. AIP Conf. Proc. 1479, 905–909 (2012)

    Article  Google Scholar 

  39. Tripathi, J.P., Abbas, S., Thakur, M.: Local and global stability analysis of two prey one predator model with help. Commun. Nonlinear Sci. Numer. Simul. 19, 3284–3297 (2014)

    Article  MathSciNet  Google Scholar 

  40. Tripathi, J.P., Abbas, S., Thakur, M.: A density dependent delayed predator-prey model with Beddington–DeAngelis type function response incorporating a prey refuge. Commun. Nonlinear Sci. Numer. Simul. 22, 427–450 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  41. Tripathi, J.P., Abbas, S., Thakur, M.: Dynamical analysis of a prey-predator model with Beddington–DeAngelis type function response incorporating a prey refuge. Nonlinear Dyn. 80, 177–196 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  42. Tripathi, J.P.: Almost periodic solution and global attractivity for a density dependent predator-prey system with mutual interference and Crowley-Martin response function. Differ. Equ. Dyn. Syst. (2016). doi:10.1007/s12591-016-0298-6

    Google Scholar 

  43. Tripathi, J.P., Tyagi, S., Abbas, S.: Global analysis of a delayed density dependent predator-prey model with Crowley–Martin functional response. Commun. Nonlinear Sci. Numer. Simul. 30, 45–69 (2016)

    Article  MathSciNet  Google Scholar 

  44. Wang, X., Liu, X., Xie, W.C., Xu, W., Xu, Y.: Global stability and persistence of HIV models with switching parameters and pulse control. Math. Comput. Simul. 123, 53–67 (2016)

    Article  MathSciNet  Google Scholar 

  45. Wang, Q., Dai, B.X.: Almost periodic solution for n-species Lotka–Volterra competitive systems and feedback controls. Appl. Math. Comput. 200(1), 133–146 (2008)

    MathSciNet  MATH  Google Scholar 

  46. Xia, Y., Cao, J., Zhang, H., Chen, F.: Almost periodic solutions of n-species competitive system with feedback controls. J. Math. Anal. Appl. 294, 503–522 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  47. Xiao, D., Ruan, S.: Global analysis of an epidemic model with nonmonotone incidence rate. Math. Biosci. 208, 419–429 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  48. Xiao, Y., Sanyi, T.: Dynamics of infection with nonlinear incidence in a simple vaccination model. Nonlinear Anal. Real World Appl. 11, 4154–4163 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  49. Xu, Y., Feng, J., Li, J., Zhang, H.: Stochastic bifurcation for a tumor-immune system with symmetric Levy noise. Phys. A Stat. Mech. Appl. 392(20), 4739–4748 (2013)

    Article  MathSciNet  Google Scholar 

  50. Xu, Y., Feng, J., Li, J., Zhang, H.: Levy noise induced switch in the gene transcriptional regulatory system. Chaos Interdiscip. J. Nonlinear Sci. 23(1), 013110 (2013)

    Article  MathSciNet  Google Scholar 

  51. Zhang, H., Xu, W., Chen, L.: A impulsive infective transmission SI model for pest control. Math. Methods Appl. Sci. 30, 1169–1184 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  52. Zhang, T., Liu, J., Teng, Z.: Dynamic behaviour for a nonautonomous SIRS epidemic model with distributed delays. Appl. Math. Comput. 214, 624–631 (2009)

    MathSciNet  MATH  Google Scholar 

  53. Zhang, W., Xu, Y., Hui, Y.: Levy noise induced stochastic resonance in an FHN model. Sci. China Technol. Sci. 59(3), 371–375 (2016)

  54. Zhang, T., Teng, Z.: On a nonautonomous SEIRS model in epidemiology. Bull. Math. Biol. 69, 2537–2559 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  55. Zhang, T., Teng, Z.: Permanence and extinction for a nonautonomous SIRS epidemic model with time delay. Appl. Math. Model. 33, 1058–1071 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  56. Zhang, F., Zhao, X.Q.: A periodic epidemic model in a patchy environment. J. Math. Anal. Appl. 325, 496–516 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We are very thankful to the anonymous reviewers and the handling editor for their constructive comments and suggestions which helped us to improve the quality of the paper. This work is fully supported by Central University of Rajasthan, India

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jai Prakash Tripathi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tripathi, J.P., Abbas, S. Global dynamics of autonomous and nonautonomous SI epidemic models with nonlinear incidence rate and feedback controls. Nonlinear Dyn 86, 337–351 (2016). https://doi.org/10.1007/s11071-016-2892-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-2892-0

Keywords

Navigation