Skip to main content
Log in

A methodology for controlling motion and constraint forces in holonomically constrained systems

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

An Erratum to this article was published on 17 July 2014

Abstract

Holonomic constraints are ubiquitous in multibody systems. We present an approach to effectively address the control of holonomically constrained systems using a novel decomposition of task, constraint, and posture space. In addition to providing a natural approach for motion control in the presence of constraints, this scheme also allows for concurrent specification of desired constraint forces, given sufficient actuation. It does this by exposing both motion coordinates and constraint forces within the control formalism, allowing for substantial flexibility in control synthesis. Implementations are presented based on a partitioning of the constraint forces into controlled and uncontrolled subsets, as well as a specification of implicit conditions on the constraint forces. A number of examples demonstrate the practical efficacy of the approach. Finally, a system-level methodology for constraint management during robot interactions with the environment is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Aghili, F.: A unified approach for inverse and direct dynamics of constrained multibody systems based on linear projection operator: applications to control and simulation. IEEE Trans. Robot. 21(5), 834–849 (2005)

    Article  Google Scholar 

  2. Aghili, F.: Projection-based control of parallel manipulators. In: Proceedings of the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5763–5769. IEEE, New York (2009)

    Chapter  Google Scholar 

  3. Appell, P.: Sur une forme générale des équations de la dynamique. J. Reine Angew. Math. 121, 310–319 (1900)

    MATH  Google Scholar 

  4. Baumgarte, J.: Stabilization of constraints and integrals of motion in dynamical systems. Comput. Methods Appl. Mech. Eng. 1(1), 1–16 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  5. Blajer, W., Kolodziejczyk, K.: A geometric approach to solving problems of control constraints: theory and a DAE framework. Multibody Syst. Dyn. 11(4), 343–364 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  6. Burdick, J.: On the inverse kinematics of redundant manipulators: characterization of the self-motion manifolds. In: Proceedings of the 1989 IEEE International Conference on Robotics and Automation, vol. 1–3, pp. 264–270. IEEE, New York (1989)

    Chapter  Google Scholar 

  7. Chang, K.S., Holmberg, R., Khatib, O.: The augmented object model: cooperative manipulation and parallel mechanism dynamics. In: Proceedings of the 2000 IEEE International Conference on Robotics and Automation, vol. 1, pp. 470–475. IEEE, New York (2000)

    Google Scholar 

  8. De Sapio, V.: Task-level control of motion and constraint forces in holonomically constrained robotic systems. In: Proceedings of the 18th World Congress of the International Federation of Automatic Control, vol. 1 (2010)

    Google Scholar 

  9. De Sapio, V., Park, J.: Multi-task constrained motion control using a mass-weighted orthogonal decomposition. J. Appl. Mech. 041, 004 (2010)

    Google Scholar 

  10. De Sapio, V., Khatib, O., Delp, S.: Task-level approaches for the control of constrained multibody systems. Multibody Syst. Dyn. 16(1), 73–102 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  11. De Sapio, V., Khatib, O., Delp, S.: Least action principles and their application to constrained and task-level problems in robotics and biomechanics. Multibody Syst. Dyn. 19(3), 303–322 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  12. Gauss, K.F.: Über ein neues allgemeines Grundgesetz der Mechanik (On a new fundamental law of mechanics). J. Reine Angew. Math. 4, 232–235 (1829)

    Article  MATH  Google Scholar 

  13. Gibbs, J.W.: On the fundamental formulae of dynamics. Am. J. Math. 2(1), 49–64 (1879)

    Article  MATH  MathSciNet  Google Scholar 

  14. Hertz, H.: Die Prinzipien der Mechanik in neuem Zusammenhange dargestellt. Barth, Leipzig (1894)

    Google Scholar 

  15. Houshangi, N.: Constrained motion control of a robot manipulator. In: Proceedings of the 1998 IEEE International Conference on Systems, Man, and Cybernetics, vol. 4, pp. 3495–3500. IEEE, New York (1998)

    Google Scholar 

  16. Huston, R.L., Liu, C.Q., Li, F.: Equivalent control of constrained multibody systems. Multibody Syst. Dyn. 10(3), 313–321 (2003)

    Article  MATH  Google Scholar 

  17. Khatib, O.: A unified approach to motion and force control of robot manipulators: the operational space formulation. IEEE J. Robot. Autom. 3(1), 43–53 (1987)

    Article  Google Scholar 

  18. Khatib, O.: Inertial properties in robotic manipulation: an object level framework. Int. J. Robot. Res. 14(1), 19–36 (1995)

    Article  Google Scholar 

  19. Khatib, O., Yokoi, K., Chang, K., Ruspini, D.C., Holmberg, R., Casal, A., Baader, A.: Force strategies for cooperative tasks in multiple mobile manipulation systems. In: Giralt, G., Hirzinger, G. (eds.) Proceedings of the 1995 International Symposium on Robotics Research, pp. 333–342. Springer, Berlin (1995)

    Google Scholar 

  20. Lagrange, J.L.: Mécanique Analytique, vol. 1. Mallet-Bachelier, Paris (1853)

    Google Scholar 

  21. Lanczos, C.: The Variational Principles of Mechanics. Dover, New York (1986)

    MATH  Google Scholar 

  22. Laulusa, A., Bauchau, O.A.: Review of classical approaches for constraint enforcement in multibody systems. J. Comput. Nonlinear Dyn. 3(1), 011004 (2008)

    Article  Google Scholar 

  23. Liu, Y.H., Arimoto, S., Kitagaki, K.: Adaptive control for holonomically constrained robots: time-invariant and time-variant cases. In: Proceedings of the 1995 IEEE International Conference on Robotics and Automation, vol. 1, pp. 905–912. IEEE, New York (1995)

    Chapter  Google Scholar 

  24. Liu, Y.H., Kitagaki, K., Ogasawara, T., Arimoto, S.: Model-based adaptive hybrid control for manipulators under multiple geometric constraints. IEEE Trans. Control Syst. Technol. 7(1), 97–109 (1999)

    Article  Google Scholar 

  25. Mills, J.K., Goldenberg, A.A.: Force and position control of manipulators during constrained motion tasks. IEEE Trans. Robot. Autom. 5(1), 30–46 (1989)

    Article  Google Scholar 

  26. Papastavridis, J.G.: Analytical Mechanics: A Comprehensive Treatise on the Dynamics of Constrained Systems for Engineers, Physicists, and Mathematicians. Oxford university Press, Oxford (2002)

    Google Scholar 

  27. Russakow, J., Khatib, O., Rock, S.M.: Extended operational space formulation for serial-to-parallel chain (branching) manipulators. In: Proceedings of the 1995 IEEE International Conference on Robotics and Automation, vol. 1, pp. 1056–1061. IEEE, New York (1995)

    Chapter  Google Scholar 

  28. Wojtyra, M.: Joint reaction forces in multibody systems with redundant constraints. Multibody Syst. Dyn. 14(1), 23–46 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  29. Wojtyra, M., Fraczek, J.: Solvability of reactions in rigid multibody systems with redundant nonholonomic constraints. Multibody Syst. Dyn. 30(2), 153–171 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was performed under the DARPA SyNAPSE contract HR0011-09-C-0001. This article is approved for public release, distribution unlimited. The views expressed are those of the author and do not reflect the official policy or position of the Department of Defense or the US Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent De Sapio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Sapio, V., Srinivasa, N. A methodology for controlling motion and constraint forces in holonomically constrained systems. Multibody Syst Dyn 33, 179–204 (2015). https://doi.org/10.1007/s11044-014-9417-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-014-9417-8

Keywords

Navigation