Skip to main content
Log in

Overexpression of Glycine soja WRKY20 enhances drought tolerance and improves plant yields under drought stress in transgenic soybean

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Drought stress is a major constraint to the production and yield stability of soybean (Glycine max L. Merrill). Transgenic breeding offers new opportunities for developing drought-resistant varieties. However, soybean is much more difficult to transform than other species; so in our previous studies, several drought-related genes, which were identified from the transcriptome profiles of Glycine soja, were first heterologous expressed in Arabidopsis or alfalfa (Medicago sativa L.) for function characterization. Among these genes, GsWRKY20 shows effective roles in drought tolerance. In this study, to breed high drought-tolerant soybean cultivar, GsWRKY20 was overexpressed in soybean under the control of the cauliflower mosaic virus 35S promoter. We found that transgenic soybean overexpressing GsWRKY20 showed greatly enhanced tolerance to drought stress compared with the non-transformed plants. Under drought stress conditions, lower relative membrane permeability and malondialdehyde (MDA) content were observed in transgenic soybean, indicating a less degree of membrane injury of transgenic plants. Higher antioxidant enzyme activity and more free proline content were observed in transgenic soybean, which help plants to resist drought stress. GsWRKY20 overexpressing soybean plants have lower stomatal density, faster stomatal closure and so exhibited lower stomatal conductance, which reduced water loss under drought stress conditions. GsWRKY20 overexpressing soybean plants exhibited higher yields under drought stress conditions, with higher plant height, longer root, and higher seed yield at the adult developmental stage. In conclusion, the transgenic soybean generated in this study could be used for farming in arid and semi-arid areas that are prone to extremely severe drought stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

Real-time PCR:

Quantitative real-time RT-PCR

RT-PCR:

Reverse transcription PCR

SOD:

Superoxide dismutase

CAT:

Catalase

POD:

Peroxidase

MDA:

Malondialdehyde

References

  • Aebi H (1984) [13] Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Biol 51(51):463–499

    Article  CAS  Google Scholar 

  • Bai X, Liu J, Tang L, Cai H, Chen M, Ji W, Liu Y, Zhu Y (2013) Overexpression of GsCBRLK from Glycine soja enhances tolerance to salt stress in transgenic alfalfa (Medicago sativa). Funct Plant Biol 40(10):1048–1056

    Article  CAS  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant & Soil 39(39):205–207

    Article  CAS  Google Scholar 

  • Flohé L, Ötting F (1984) [10] Superoxide dismutase assays. Methods in Enzymology:93–104

  • Flores T, Karpova O, Su X, Zeng P, Bilyeu K, Sleper DA, Nguyen HT, Zhang ZJ (2008) Silencing of Gm FAD3 gene by siRNA leads to low α-linolenic acids (18:3) of fad3-mutant phenotype in soybean [ Glycine max (Merr.)]. Transgenic Res 17(5):839–850

    Article  CAS  PubMed  Google Scholar 

  • Fowler S, Thomashow MF (2002) Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell 14(8):1675–1690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ge Y, Li Y, Zhu YM, Bai X, Lv DK, Guo D, Ji W, Cai H (2010) Global transcriptome profiling of wild soybean (Glycine soja) roots under NaHCO3 treatment. BMC Plant Biol 10:153

    Article  PubMed  PubMed Central  Google Scholar 

  • Goodin MM, Zaitlin D, Naidu RA, Lommel SA (2008) Nicotiana Benthamiana : its history and future as a model for plant–pathogen interactions. Mol Plant-Microbe Interact 21(8):1015–1026

    Article  CAS  PubMed  Google Scholar 

  • Hu H, Dai M, Yao J, Xiao B, Li X, Zhang Q, Xiong L (2006) Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought tolerance and salt tolerance in rice. Proc Natl Acad Sci 103(35):12987–12992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu Y, Chen L, Wang H, Zhang L, Wang F, Yu D (2013) Arabidopsis transcription factor WRKY8 functions antagonistically with its interacting partner VQ9 to modulate salinity stress tolerance. Plant J 74(5):730–745

    Article  CAS  PubMed  Google Scholar 

  • James AT, Lawn RJ, Cooper M (2008) Genotypic variation for drought stress response traits in soybean. II. Inter-relations between epidermal conductance, osmotic potential, relative water content, and plant survival. Aust J Agric Res 59(7):670–678

    Article  Google Scholar 

  • Jiang Y, Deyholos M (2009) Functional characterization of Arabidopsis NaCl-inducible WRKY25 and WRKY33 TFs in abiotic stresses. Plant Mol Biol. Plant Mol Biol 69(1–2):91–105

    Article  CAS  PubMed  Google Scholar 

  • Lin Z, Li S, Zhang D (1988) The changes of pigments, phenolics content and activities of polyphenol oxidase and phenylalanine ammonia-lyase in pericarp of postharvest litchi fruit. Acta Bot Sin 30(1):40–45

    CAS  Google Scholar 

  • Luo X, Bai X, Sun X, Zhu D, Liu B, Ji W, Cai H, Cao L, Wu J, Hu M (2013a) Expression of wild soybean WRKY20 in Arabidopsis enhances drought tolerance and regulates ABA signalling. Journal of experimental botany:ert073

  • Luo X, Sun X, Liu B, Zhu D, Bai X, Cai H, Ji W, Cao L, Wu J, Wang M (2013b) Ectopic expression of a WRKY homolog from Glycine soja alters flowering time in Arabidopsis. PLoS One 8(8):e73295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manavalan LP, Guttikonda SK, Tran L-SP, Nguyen HT (2009) Physiological and molecular approaches to improve drought tolerance in soybean. Plant Cell Physiol 50(7):1260–1276

    Article  CAS  PubMed  Google Scholar 

  • Miyashita K, Kimura K (2005) Recovery responses of photosynthesis, transpiration, and stomatal conductance in kidney bean following drought stress. Environ Exp Bot 53(2):205–214

    Article  CAS  Google Scholar 

  • Nayyar H, Satwinder K, Kumar S, Singh K, Dhir K (2005) Involvement of polyamines in the contrasting sensitivity of chickpea (Cicer arietinum L.) and soybean (Glycine max (L.) Merrill.) to water deficit stress. Botanical Bulletin of Academia Sinica 46

  • Niu CF, Wei W, Zhou QY, Tian AG, Hao YJ, Zhang WK, Biao MA, Lin Q, Zhang ZB, Zhang JS (2012) Wheat WRKY genes TaWRKY2 and TaWRKY19 regulate abiotic stress tolerance in transgenic Arabidopsis plants. Plant Cell Environ 35(6):1156–1170

    Article  CAS  PubMed  Google Scholar 

  • Phang TH, Shao G, Lam HM (2008) Salt tolerance in soybean. J Integr Plant Biol 50(10):1196–1212

    Article  CAS  PubMed  Google Scholar 

  • Ren X, Chen Z, Liu Y, Zhang H, Zhang M, Liu Q, Hong X, Zhu JK, Gong Z (2010) ABO3, a WRKY transcription factor, mediates plant responses to abscisic acid and drought tolerance in Arabidopsis. Plant J 63(3):417–429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richards R (2000) Selectable traits to increase crop photosynthesis and yield of grain crops. J Exp Bot 51(suppl 1):447–458

    Article  CAS  PubMed  Google Scholar 

  • Shou H, Zhu D, Chen C, Zhu W, Zhu S (1991) The initial study of responses and physiological indexes for drought tolerance in eight soybean varieties under drought condition. Acta Agric Zhejiangensis:278–281

  • Sun X, Li Y, Cai H, Bai X, Wei J, Ding X, Zhu Y (2011) The Arabidopsis AtbZIP1 transcription factor is a positive regulator of plant tolerance to salt, osmotic and drought stresses. J Plant Res 125(3):429–438

    Article  PubMed  Google Scholar 

  • Sun X, Sun M, Luo X, Ding X, Ji W, Cai H, Bai X, Liu X, Zhu Y (2013) A Glycine soja ABA-responsive receptor-like cytoplasmic kinase, GsRLCK, positively controls plant tolerance to salt and drought stresses. Planta 237(6):1527–1545

    Article  CAS  PubMed  Google Scholar 

  • Tang L, Cai H, Zhai H, Luo X, Wang Z, Cui L, Bai X (2014) Overexpression of Glycine soja WRKY20 enhances both drought and salt tolerance in transgenic alfalfa (Medicago sativa L.). Plant Cell, Tissue and Organ Culture (PCTOC) 118(1):77–86

    Article  CAS  Google Scholar 

  • Tang L, Hua C, Wei J, Xiao L, Wang Z, Jing W, Wang X, Lin C, Yang W, Zhu Y (2013) Overexpression of GsZFP1 enhances salt and drought tolerance in transgenic alfalfa ( Medicago sativa L.). Plant Physiology & Biochemistry 71(71C):22–30

    Article  CAS  Google Scholar 

  • Taylor H, Burnett E, Booth G (1978) Taproot elongation rates of soybeans. Zeitschrift fuer Acker und Pflanzenbau

  • Wang M, Vannozzi A, Wang G, Zhong Y, Corso M, Cavallini E, Cheng ZM (2015) A comprehensive survey of the grapevine VQ gene family and its transcriptional correlation with WRKY proteins. Front Plant Sci 6:417

    PubMed  PubMed Central  Google Scholar 

  • Wei W, Zhang Y, Lu H, Guan Z, Chai T (2008) A novel WRKY transcriptional factor from Thlaspi Caerulescens negatively regulates the osmotic stress tolerance of transgenic tobacco. Plant Cell Rep 27(4):795–803

    Article  CAS  PubMed  Google Scholar 

  • Willems E, Leyns L, Vandesompele J (2008) Standardization of real-time PCR gene expression data from independent biological replicates. Anal Biochem 379(1):127–129

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Shiroto Y, Kishitani S, Ito Y, Toriyama K (2009) Enhanced heat and drought tolerance in transgenic rice seedlings overexpressing OsWRKY11 under the control of HSP101 promoter. Plant Cell Rep 28(1):21–30

    Article  CAS  PubMed  Google Scholar 

  • Zeng T, Kou Y, Liu H, Li X, Xiao J, Wang S (2011) OsWRKY45 alleles play different roles in abscisic acid signalling and salt stress tolerance but similar roles in drought and cold tolerance in rice. J Exp Bot 62(14):4863–4874

    Article  Google Scholar 

  • Zhang JZ (2003) Overexpression analysis of plant transcription factors. Curr Opin Plant Biol 6(5):430–440

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31371544) and the National Major Project for Cultivation of Transgenic Crops (2016ZX08004-002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi Bai.

Additional information

Wenfeng Ning and Hong Zhai contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ning, W., Zhai, H., Yu, J. et al. Overexpression of Glycine soja WRKY20 enhances drought tolerance and improves plant yields under drought stress in transgenic soybean. Mol Breeding 37, 19 (2017). https://doi.org/10.1007/s11032-016-0614-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-016-0614-4

Keywords

Navigation