Skip to main content
Log in

A genotyping platform assembled with high-throughput DNA extraction, codominant functional markers, and automated CE system to accelerate marker-assisted improvement of rice

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

The introgression of multiple genes into traditional cultivars using marker-assisted selection (MAS) in order to obtain favorable traits is an effective strategy to achieve improved rice lines. Genotyping of markers is a central component of the evaluation of germplasm and the selection of progeny lines. However, efficient DNA extraction and genotyping of large breeding populations still remain limiting factors in rice molecular breeding programs. This study has developed and validated a cost-effective, rapid (<1 h for 96 samples), and high-throughput (96-well format) total DNA-extraction method based on magnetic particle technology. To improve the grain-quality traits of two rice varieties, we have designed and employed an efficient codominant functional marker system (including Wx, ALK, Chalk5, and fgr genes), in combination with genotyping based on automated capillary electrophoresis. Rice lines with simultaneous improvement at multiple loci were obtained and found to have superior grain quality and to be fragrant. The genotyping pipeline established in this study represents an efficient, reliable, and precise platform for MAS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahmed I, Islam M, Arshad W, Mannan A, Ahmad W, Mirza B (2009) High-quality plant DNA extraction for PCR: an easy approach. J Appl Genet 50:105–107

    Article  CAS  PubMed  Google Scholar 

  • Andersen JR, Lubberstedt T (2003) Functional markers in plants. Trends Plant Sci 8:554–560

    Article  CAS  PubMed  Google Scholar 

  • Ayres NM, McClung AM, Larkin PD, Bligh HFJ, Jones CA, Park WD (1997) Microsatellites and a single-nucleotide polymorphism differentiate apparent amylose classes in an extended pedigree of US rice germplasm. Theor Appl Genet 94:773–781

    Article  CAS  Google Scholar 

  • Bao JS, Corke H, Sun M (2006) Nucleotide diversity in starch synthase IIa and validation of single nucleotide polymorphisms in relation to starch gelatinization temperature and other physicochemical properties in rice (Oryza sativa L.). Theor Appl Genet 113:1171–1183

    Article  CAS  PubMed  Google Scholar 

  • Batley J (2015) Plant genotyping: methods and protocols. Springer, New York

    Book  Google Scholar 

  • Cai XL, Wang ZY, Xing YY, Zhang JL, Hong MM (1998) Aberrant splicing of intron 1 leads to the heterogeneous 5′ UTR and decreased expression of waxy gene in rice cultivars of intermediate amylose content. Plant J 14:459–465

    Article  CAS  PubMed  Google Scholar 

  • Calingacion M, Laborte A, Nelson A et al (2014) Diversity of global rice markets and the science required for consumer-targeted rice breeding. PLoS One 9:e85106

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen MH, Bergman C, Pinson S, Fjellstrom R (2008) Waxy gene haplotypes: associations with apparent amylose content and the effect by the environment in an international rice germplasm collection. J Cereal Sci 47:536–545

    Article  CAS  Google Scholar 

  • Collins A, Ke X (2012) Primer1: primer design web service for tetra-primer ARMS-PCR. Open Bioinform J 6:55–58

    Article  Google Scholar 

  • Edwards K, Johnstone C, Thompson C (1991) A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Res 19:1349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferreira Santos RM, Vanderlei Lopes U, Clément D, Pires JL, Matos Lima E, Batista Messia T, Peres Gramacho K (2014) A protocol for large scale genomic DNA isolation for cacao genetics analysis. Afr J Biotechnol 13:814–820

    Article  Google Scholar 

  • Hari Y, Srinivasarao K, Viraktamath BC et al (2013) Marker-assisted introgression of bacterial blight and blast resistance into IR 58025B, an elite maintainer line of rice. Plant Breed 132:586–594

    Article  CAS  Google Scholar 

  • He Y, Han YP, Jiang L, Xu CW, Lu JF, Xu ML (2006) Functional analysis of starch-synthesis genes in determining rice eating and cooking qualities. Mol Breed 18:277–290

    Article  CAS  Google Scholar 

  • Jain SM, Brar DS, Ahloowalia BS (2010) Molecular techniques in crop improvement. Springer, New York

    Google Scholar 

  • Jantaboon J, Siangliw M, Im-mark S, Jamboonsri W, Vanavichit A, Toojinda T (2011) Ideotype breeding for submergence tolerance and cooking quality by marker-assisted selection in rice. Field Crop Res 123:206–213

    Article  Google Scholar 

  • Jiang JF, Yang DB, Ali J, Mou TM (2015) Molecular marker-assisted pyramiding of broad-spectrum disease resistance genes, Pi2 and Xa23, into GZ63-4S, an elite thermo-sensitive genic male-sterile line in rice. Mol Breed 35:1–12

    Article  Google Scholar 

  • Jin L, Lu Y, Shao YF, Zhang G, Xiao P, Shen SQ, Corke H, Bao JS (2010) Molecular marker assisted selection for improvement of the eating, cooking and sensory quality of rice (Oryza sativa L.). J Cereal Sci 51:159–164

    Article  CAS  Google Scholar 

  • Kadirvel P, Senthilvel S, Geethanjali S, Sujatha M, Varaprasad KS (2015) Genetic markers, trait mapping and marker-assisted selection in plant breeding. In: Bahadur B, Venkat Rajam M, Sahijram L, Krishnamurthy VK (eds) Plant biology and biotechnology, vol II., Plant genomics and biotechnologySpringer, New Delhi, pp 65–88

    Chapter  Google Scholar 

  • Karakousis A, Langridge P (2003) A high-throughput plant DNA extraction method for marker analysis. Plant Mol Biol Rep 21:95

    Article  Google Scholar 

  • Li H, Li J, Cong XH, Duan YB, Li L, Wei PC, Lu XZ, Yang JB (2013) A high-throughput, high-quality plant genomic DNA extraction protocol. Genet Mol Res 12:4526–4539

    Article  CAS  PubMed  Google Scholar 

  • Li YB, Li XH, Xiao JH, Xu CG, He YQ, Fan CC, Zhong XY, Yun P, Luo LJ, Yan B, Peng B, Xie WB, Wang GW (2014) Chalk5 encodes a vacuolar H+-translocating pyrophosphatase influencing grain chalkiness in rice. Nat Genet 46:398

    Article  CAS  PubMed  Google Scholar 

  • Liu XL, Wan XY, Ma XD, Wan JM (2011) Dissecting the genetic basis for the effect of rice chalkiness, amylose content, protein content, and rapid viscosity analyzer profile characteristics on the eating quality of cooked rice using the chromosome segment substitution line population across eight environments. Genome 54:64–80

    Article  CAS  PubMed  Google Scholar 

  • Luo YC, Sangha JS, Wang SH, Li ZF, Yang JB, Yin ZC (2012) Marker-assisted breeding of Xa4, Xa21 and Xa27 in the restorer lines of hybrid rice for broad-spectrum and enhanced disease resistance to bacterial blight. Mol Breed 30:1601–1610

    Article  CAS  Google Scholar 

  • Luo WL, Guo T, Yang QY, Wang H, Liu YZ, Zhu XY, Chen ZQ (2014) Stacking of five favorable alleles for amylase content, fragrance and disease resistance into elite lines in rice (Oryza sativa) by using four HRM-based markers and a linked gel-based marker. Mol Breed 34:805–815

    Article  CAS  Google Scholar 

  • Moose SO, Mumm H (2008) Molecular plant breeding as the foundation for 21st century crop improvement. Plant Physiol 147:969–977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ni DH, Zhang SL, Chen S, Xu Y, Li L, Li H, Wang ZY, Cai XL, Li ZF, Yang JB (2011) Improving cooking and eating quality of Xieyou57, an elite indica hybrid rice, by marker-assisted selection of the Wx locus. Euphytica 179:355–362

    Article  Google Scholar 

  • Perez CM, Juliano BO (1978) Modification of the simplified amylose test for milled rice. Starch 30:424

    Article  CAS  Google Scholar 

  • Pervaiz ZH, Khaliq I, Rabbani MA, Malik SA, Turi NA (2011) A modified method for high-quality DNA extraction for molecular analysis in cereal plants. Genet Mol Res 10:1669–1673

    Article  CAS  PubMed  Google Scholar 

  • Ramkumar G, Prahalada GD, Hechanova SL, Vinarao R, Jena KK (2015) Development and validation of SNP-based functional codominant markers for two major disease resistance genes in rice (O. sativa L.). Mol Breed 35:129

    Article  Google Scholar 

  • Saihua C, Yi Y, Weiwei S, Qing J, Fei H, Ziding Z, Zhukuan C, Xiangnong L, Mingliang X (2008) Badh2, encoding betaine aldehyde dehydrogenase, inhibits the biosynthesis of 2-acetyl-1-pyrroline, a major component in rice fragrance. Plant Cell 20:1850–1861

    Article  Google Scholar 

  • Septiningsih EM, Hidayatun N, Sanchez DL, Nugraha Y, Carandang J, Pamplona AM, Collard BCY, Ismail AM, Mackill DJ (2015) Accelerating the development of new submergence tolerant rice varieties: the case of Ciherang-Sub1 and PSB Rc18-Sub1. Euphytica 202:259–268

    Article  Google Scholar 

  • Shao G, Tang S, Chen M, Wei X, He J, Luo J, Jiao G, Hu Y, Xie L, Hu P (2013) Haplotype variation at Badh2, the gene determining fragrance in rice. Genomics 101:157–162

    Article  CAS  PubMed  Google Scholar 

  • Sheng WT, Zhou LJ, Wu J, Bai B, Deng QY (2015) Evaluation of genetic effect on quality and yield traits of WXin in rice substitution lines of Y58S by marker-assisted backcross breeding. Ind J Genet Pl Br 75:114–116

    Article  Google Scholar 

  • Son J-S, Do VB, Kim K-O, Cho MS, Suwonsichon T, Valentin D (2014) Understanding the effect of culture on food representations using word associations: the case of “rice” and “good rice”. Food Qual Prefer 31:38–48

    Article  Google Scholar 

  • Sun C, Chen G, Rao YC, Zhang GH, Gao ZY, Liu J, Ju PN, Hu J, Guo LB, Qian Q, Zeng DL (2010) A simple method for rapid preparation of rice genomic DNA. Chin J Rice Sci 24:677–680

    CAS  Google Scholar 

  • Sun WQ, Zhou QL, Yao Y, Qiu XJ, Xie K, Yu SB (2015) Identification of genomic regions and the isoamylase gene for reduced grain chalkiness in rice. PLoS One 10:e0122013

    Article  PubMed  PubMed Central  Google Scholar 

  • Tanksley SD (1983) Molecular markers in plant breeding. Plant Mol Biol Rep 1:3–8

    Article  CAS  Google Scholar 

  • Thomson MJ (2014) High-throughput SNP genotyping to accelerate crop improvement. Plant Breed Biotechnol 2:195–212

    Article  Google Scholar 

  • Umemoto T, Aoki N (2005) Single-nucleotide polymorphisms in rice starch synthase IIa that alter starch gelatinisation and starch association of the enzyme. Funct Plant Biol 32:763–768

    Article  CAS  Google Scholar 

  • Waters DLE, Henry RJ, Reinke RF, Fitzgerald MA (2006) Gelatinization temperature of rice explained by polymorphisms in starch synthase. Plant Biotechnol J 4:115–122

    Article  CAS  PubMed  Google Scholar 

  • Xin ZG, Chen JP (2012) A high throughput DNA extraction method with high yield and quality. Plant Methods 8:1–7

    Article  Google Scholar 

  • Xu Y, Li ZK, Thomson MJ (2012) Molecular breeding in plants: moving into the mainstream. Mol Breed 29:831–832

    Article  Google Scholar 

  • Yan B, Yacouba NT, Chen J, Wang Y, Gao G, Zhang Q, Liu X, He Y (2014) Analysis of minor quantitative trait loci for eating and cooking quality traits in rice using a recombinant inbred line population derived from two indica cultivars with similar amylose content. Mol Breed 34:2151–2163

    Article  CAS  Google Scholar 

  • Yang YG, Kim JY, Soh M-S, Kim D-S (2007) A simple and rapid gene amplification from Arabidopsis leaves using AnyDirect system. J Steroid Biochem 40:444–447

    CAS  Google Scholar 

  • Ye S, Dhillon S, Ke XY, Collins AR, Day IN (2001) An efficient procedure for genotyping single nucleotide polymorphisms. Nucleic Acids Res 29:88

    Article  Google Scholar 

  • Zhou L, Chen ZJ, Lang XY, Du B, Liu K, Yang GC, Hu G, Li SH, He GC, You AQ (2013) Development and validation of a PCR-based functional marker system for the brown planthopper resistance gene Bph14 in rice. Breed Sci 63:347–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Financial support for this research was provided in part by a grant from Science and Technology Planning Project of Guangdong Province, China (2015B020231011), National Key Technology Research and Development Program of China (No. 2016YFD0102102), and the earmarked fund for Modern Agro-industry Technology Research System (CARS-01-12).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tao Guo or Zhiqiang Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2968 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Gao, W., Guo, T. et al. A genotyping platform assembled with high-throughput DNA extraction, codominant functional markers, and automated CE system to accelerate marker-assisted improvement of rice. Mol Breeding 36, 123 (2016). https://doi.org/10.1007/s11032-016-0547-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-016-0547-y

Keywords

Navigation