Skip to main content
Log in

Solanum lycopersicum agamous-like MADS-box protein AGL15-like gene, SlMBP11, confers salt stress tolerance

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

MADS-box family transcription factors are key regulators of plants and are involved in many biological processes. However, to date little information regarding stress-related MADS-box genes is available in tomato. To further elucidate the function of the SlMBP11 gene in response to abiotic stress, we generated transgenic tomato plants with knockdown SlMBP11 by RNA interference (RNAi) and plants overexpressing SlMBP11, and investigated the effects of salt stress on wild-type (WT), RNAi and overexpressing plants. In our study, seedling growth of SlMBP11-RNAi plants was more inhibited by salt than that of WT at post-germination stage, and RNAi plants became less tolerant to salt stress than WT plants in soil, which was demonstrated by lower relative water and chlorophyll content, and higher relative electrolyte leakage and malondialdehyde (MDA) content. In contrast, overexpressing plants had no obvious difference from WT seedlings when challenged by NaCl at post-germination stage, and overexpression of SlMBP11 in tomato enhanced tolerance to salt stress, which was confirmed by lower relative electrolyte leakage and MDA content, and higher water and chlorophyll content in transgenic plants. In addition, the expression of genes related to chlorophyll biosynthesis, photosystem and stress was changed in opposite directions in SlMBP11-RNAi and overexpressing plants under control and salt-stressed conditions. Together, these results highlighted the important role of SlMBP11 as a stress-responsive transcription factor in the positive modulation of salt-stress tolerance, possibly through an abscisic acid-independent signaling network, and may have promising applications in the engineering of salt-tolerant tomato.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alvarez-Buylla ER, Pelaz S, Liljegren SJ, Gold SE, Burgeff C, Ditta GS, de Pouplana LR, Martinez-Castilla L, Yanofsky MF (2000) An ancestral MADS-box gene duplication occurred before the divergence of plants and animals. Proc Natl Acad Sci USA 97(10):5328–5333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arora R, Agarwal P, Ray S, Singh AK, Singh VP, Tyagi AK, Kapoor S (2007) MADS-box gene family in rice: genome-wide identification, organization and expression profiling during reproductive development and stress. BMC Genom 8(1):242

    Article  Google Scholar 

  • Bari R, Jones J (2009) Role of plant hormones in plant defence responses. Plant Mol Biol 69(4):473–488

    Article  CAS  PubMed  Google Scholar 

  • Becker A, Theißen G (2003) The major clades of MADS-box genes and their role in the development and evolution of flowering plants. Mol Phylogenetics Evol 29(3):464–489

    Article  CAS  Google Scholar 

  • Bussink HJ, Oliver R (2001) Identification of two highly divergent catalase genes in the fungal tomato pathogen, Cladosporium fulvum. Eur J Biochem 268(1):15–24

    Article  CAS  PubMed  Google Scholar 

  • Chen MK, Hsu WH, Lee PF, Thiruvengadam M, Chen HI, Yang CH (2011) The MADS box gene, FOREVER YOUNG FLOWER, acts as a repressor controlling floral organ senescence and abscission in Arabidopsis. Plant J 68(1):168–185

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Ren J, Shi HY, Zhang YK, You Y, Fan JB, Chen K, Liu SQ, Nevo E, Fu JM, Peng JH (2015) TdCBL6, a calcineurin B-like gene from wild emmer wheat (Triticum dicoccoides), is involved in response to stresses of salt and low-K+. Mol Breed 35(1):1–12

    Article  Google Scholar 

  • Dhanda SS, Sethi GS (1998) Inheritance of excised-leaf water loss and relative water content in bread wheat (Triticum aestivum). Euphytica 104(1):39–47

    Article  Google Scholar 

  • Díaz-Riquelme J, Lijavetzky D, Martínez-Zapater JM, Carmona MJ (2009) Genome-wide analysis of MIKCC-type MADS box genes in grapevine. Plant Physiol 149(1):354–369

    Article  PubMed  PubMed Central  Google Scholar 

  • Dong TT, Hu ZL, Deng L, Wang Y, Zhu MK, Zhang JL, Chen GP (2013) A tomato MADS-box transcription factor, SlMADS1, acts as a negative regulator of fruit ripening. Plant Physiol 163(2):1026–1036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duan WK, Song XM, Liu TK, Huang ZN, Ren J, Hou XL, Li Y (2015) Genome-wide analysis of the MADS-box gene family in Brassica rapa (Chinese cabbage). Mol Genet Genomics 290(1):239–255

    Article  CAS  PubMed  Google Scholar 

  • Fang SC, Fernandez DE (2002) Effect of regulated overexpression of the MADS domain factor AGL15 on flower senescence and fruit maturation. Plant Physiol 130(1):78–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandez DE, Heck GR, Perry SE, Patterson SE, Bleecker AB, Fang SC (2000) The embryo MADS domain factor AGL15 acts postembryonically: inhibition of perianth senescence and abscission via constitutive expression. Plant Cell 12(2):183–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrandiz C, Gu Q, Martienssen R, Yanofsky MF (2000) Redundant regulation of meristem identity and plant architecture by FRUITFULL, APETALA1 and CAULIFLOWER. Development 127(4):725–734

    CAS  PubMed  Google Scholar 

  • Force A, Lynch M, Pickett FB, Amores A, Yan YL, Postlethwait J (1999) Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151(4):1531–1545

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fujita M, Fujita Y, Maruyama K, Seki M, Hiratsu K, Ohme-Takagi M, Tran LSP, Yamaguchi-Shinozaki K, Shinozaki K (2004) A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway. Plant J 39(6):863–876

    Article  CAS  PubMed  Google Scholar 

  • Ganeteg U, Külheim C, Andersson J, Jansson S (2004) Is each light-harvesting complex protein important for plant fitness? Plant Physiol 134(1):502–509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gramzow L, Theissen G (2010) A hitchhiker’s guide to the MADS world of plants. Genome Biol 11(6):1–11

    Article  Google Scholar 

  • Guo XH, Hu ZL, Yin WC, Yu XH, Zhu ZG, Zhang JL, Chen GP (2016) The tomato floral homeotic protein FBP1-like gene, SlGLO1, plays key roles in petal and stamen development. Sci Rep 6:20454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henschel K, Kofuji R, Hasebe M, Saedler H, Münster T, Theissen G (2002) Two ancient classes of MIKC-type MADS-box genes are present in the moss Physcomitrella patens. Mol Biol Evol 19(6):801–814

    Article  CAS  PubMed  Google Scholar 

  • Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database. Nucleic Acids Res 27(1):297–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Itkin M, Seybold H, Breitel D, Rogachev I, Meir S, Aharoni A (2009) TOMATO AGAMOUS-LIKE 1 is a component of the fruit ripening regulatory network. Plant J 60(6):1081–1095

    Article  CAS  PubMed  Google Scholar 

  • Kaufmann K, Melzer R, Theissen G (2005) MIKC-type MADS-domain proteins: structural modularity, protein interactions and network evolution in land plants. Gene 347(2):183–198

    Article  CAS  PubMed  Google Scholar 

  • Kaveh H, Nemati H, Farsi M, Jartoodeh SV (2011) How salinity affect germination and emergence of tomato lines. J Biol Environ Sci 5(15):159–163

    Google Scholar 

  • Khong GN, Pati PK, Richaud F, Parizot B, Bidzinski P, Mai CD, Bes M, Bourrie I, Meynard D, Beeckman T et al (2015) OsMADS26 negatively regulates resistance to pathogens and drought tolerance in rice. Plant Physiol 169(4):2935–2949

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kishor PBK, Hong Z, Miao G-H, Chein-An AH, Desh Pal SV (1995) Overexpression of Δ1-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol 108(4):1387–1394

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kovács L, Damkjær J, Kereïche S, Ilioaia C, Ruban AV, Boekema EJ, Jansson S, Horton P (2006) Lack of the light-harvesting complex CP24 affects the structure and function of the grana membranes of higher plant chloroplasts. Plant Cell 18(11):3106–3120

    Article  PubMed  PubMed Central  Google Scholar 

  • Kramer EM, Hall JC (2005) Evolutionary dynamics of genes controlling floral development. Curr Opin Plant Biol 8(1):13–18

    Article  CAS  PubMed  Google Scholar 

  • Kwantes M, Liebsch D, Verelst W (2011) How MIKC* MADS-box genes originated and evidence for their conserved function throughout the evolution of vascular plant gametophytes. Mol Biol Evol 29(1):293–302

    Article  PubMed  Google Scholar 

  • Le DT, Nishiyama R, Watanabe Y, Mochida K, Yamaguchi-Shinozaki K, Shinozaki K, Tran L-SP (2011) Genome-wide survey and expression analysis of the plant-specific NAC transcription factor family in soybean during development and dehydration stress. DNA Res 18(4):263–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee BH, Henderson DA, Zhu JK (2005) The Arabidopsis cold-responsive transcriptome and its regulation by ICE1. Plant Cell 17(11):3155–3175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee S, Woo YM, Ryu SI, Shin YD, Kim WT, Park KY, Lee IJ, An G (2008) Further characterization of a rice AGL12 group MADS-box gene, OsMADS26. Plant Physiol 147(1):156–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee I, Seo YS, Coltrane D, Hwang S, Oh T, Marcotte EM, Ronald PC (2011) Genetic dissection of the biotic stress response using a genome-scale gene network for rice. Proc Natl Acad Sci USA 108(45):18548–18553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liljegren SJ, Ditta GS, Eshed HY, Savidge B, Bowman JL, Yanofsky MF (2000) SHATTERPROOF MADS-box genes control seed dispersal in Arabidopsis. Nature 404(6779):766–770

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Wang L, Xing X, Sun LP, Pan JW, Kong XP, Zhang MY, Li DQ (2013) ZmLEA3, a multifunctional group 3 LEA protein from maize (Zea mays L.), is involved in biotic and abiotic stresses. Plant Cell Physiol 54(6):944–959

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2 −ΔΔCT method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  • Loukehaich R, Wang TT, Ouyang B, Ziaf K, Li HX, Zhang JH, Lu YE, Ye ZB (2012) SpUSP, an annexin-interacting universal stress protein, enhances drought tolerance in tomato. J Exp Bot 63(15):5593–5606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lynch M, Force A (2000) The probability of duplicate gene preservation by subfunctionalization. Genetics 154(1):459–473

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mao L, Begum D, Chuang HW, Budiman MA, Szymkowiak EJ, Irish EE, Wing RA (2000) JOINTLESS is a MADS-box gene controlling tomato flower abscission zone development. Nature 406(6798):910–913

    Article  CAS  PubMed  Google Scholar 

  • Michaels SD, Ditta G, Gustafson-Brown C, Pelaz S, Yanofsky M, Amasino RM (2003) AGL24 acts as a promoter of flowering in Arabidopsis and is positively regulated by vernalization. Plant J 33(5):867–874

    Article  CAS  PubMed  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7(9):405–410

    Article  CAS  PubMed  Google Scholar 

  • Moore RC, Purugganan MD (2005) The evolutionary dynamics of plant duplicate genes. Curr Opin Plant Biol 8(8):122–128

    Article  CAS  PubMed  Google Scholar 

  • Moore S, Vrebalov J, Payton P, Giovannoni J (2002) Use of genomics tools to isolate key ripening genes and analyse fruit maturation in tomato. J Exp Bot 53(377):2023–2030

    Article  CAS  PubMed  Google Scholar 

  • Najami N, Janda T, Barriah W, Kayam G, Tal M, Guy M, Volokita M (2008) Ascorbate peroxidase gene family in tomato: its identification and characterization. Mol Genet Genomics 279(2):171–182

    Article  CAS  PubMed  Google Scholar 

  • Nakashima K, Takasaki H, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2012) NAC transcription factors in plant abiotic stress responses. Biochim Biophys Acta 1819(2):97–103

    Article  CAS  PubMed  Google Scholar 

  • Nesi N, Debeaujon I, Jond C, Stewart AJ, Jenkins GI, Caboche M, Lepiniec L (2002) The TRANSPARENT TESTA16 locus encodes the ARABIDOPSIS BSISTER MADS domain protein and is required for proper development and pigmentation of the seed coat. Plant Cell 14(10):2463–2479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicot N, Hausman JF, Hoffmann L, Evers D (2005) Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. J Exp Bot 56(421):2907–2914

    Article  CAS  PubMed  Google Scholar 

  • Orellana S, Yanez M, Espinoza A, Verdugo I, Gonzalez E, Ruiz-Lara S, Casaretto JA (2010) The transcription factor SlAREB1 confers drought, salt stress tolerance and regulates biotic and abiotic stress-related genes in tomato. Plant Cell Environ 33(12):2191–2208

    Article  CAS  PubMed  Google Scholar 

  • Pan Y, Seymour GB, Lu CG, Hu ZL, Chen XQ, Chen GP (2012) An ethylene response factor (ERF5) promoting adaptation to drought and salt tolerance in tomato. Plant Cell Rep 31(2):349–360

    Article  CAS  PubMed  Google Scholar 

  • Pelaz S, Ditta GS, Baumann E, Wisman E, Yanofsky MF (2000) B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405(6783):200–203

    Article  CAS  PubMed  Google Scholar 

  • Pichersky E, Tanksley SD, Piechulla B, Stayton MM, Dunsmuir P (1988) Nucleotide-sequence and chromosomal location of Cab-7, the tomato gene encoding the Type-II chlorophyll a/B-binding polypeptide of photosystem-I. Plant Mol Biol 11(1):69–71

    Article  CAS  PubMed  Google Scholar 

  • Powell ALT, Nguyen CV, Hill T, Cheng KL, Figueroa-Balderas R, Aktas H, Ashrafi H, Pons C, Fernandez-Munoz R, Vicente A et al (2012) Uniform ripening encodes a Golden 2-like transcription factor regulating tomato fruit chloroplast development. Science 336(6089):1711–1715

    Article  CAS  PubMed  Google Scholar 

  • Qin F, Shinozaki K, Yamaguchi-Shinozaki K (2011) Achievements and challenges in understanding plant abiotic stress responses and tolerance. Plant Cell Physiol 52(9):1569–1582

    Article  CAS  PubMed  Google Scholar 

  • Rijpkema AS, Gerats T, Vandenbussche M (2007) Evolutionary complexity of MADS complexes. Curr Opin Plant Biol 10(1):32–38

    Article  CAS  PubMed  Google Scholar 

  • Saedler H, Becker A, Winter KU, Kirchner C, Theissen G (2001) MADS-box genes are involved in floral development and evolution. Acta Biochim Pol 48(2):351–358

    CAS  PubMed  Google Scholar 

  • Shan H, Zahn L, Guindon S, Wall PK, Kong H, Ma H, DePamphilis CW, Leebens-Mack J (2009) Evolution of plant MADS box transcription factors: evidence for shifts in selection associated with early angiosperm diversification and concerted gene duplications. Mol Biol Evol 26(10):2229–2244

    Article  CAS  PubMed  Google Scholar 

  • Singer SD, Krogan NT, Ashton NW (2007) Clues about the ancestral roles of plant MADS-box genes from a functional analysis of moss homologues. Plant Cell Rep 26(26):1155–1169

    Article  CAS  PubMed  Google Scholar 

  • Smaczniak C, Immink RG, Angenent GC, Kaufmann K (2012a) Developmental and evolutionary diversity of plant MADS domain factors: insights from recent studies. Development 139(17):3081–3098

    Article  CAS  PubMed  Google Scholar 

  • Smaczniak C, Immink RGH, Muino JM, Blanvillain R, Busscher M, Busscher-Lange J, Dinh QD, Liu SJ, Westphal AH, Boeren S, Parcy F, Xu L, Carles CC, Angenent CC, Kaufmann K (2012b) Characterization of MADS-domain transcription factor complexes in Arabidopsis flower development. Proc Natl Acad Sci USA 109(5):1560–1565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sugita M, Manzara T, Pichersky E, Cashmore A, Gruissem W (1987) Genomic organization, sequence analysis and expression of all five genes encoding the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase from tomato. Mol Gen Genet 209(2):247–256

    Article  CAS  PubMed  Google Scholar 

  • Tanabe Y, Hasebe M, Sekimoto H, Nishiyama T, Kitani M, Henschel K, Münster T, Theissen G, Nozaki H, Ito M (2005) Characterization of MADS-box genes in charophycean green algae and its implication for the evolution of MADS-box genes. Proc Natl Acad Sci USA 102(7):2436–2441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang YM, Liu MY, Gao SQ, Zhang Z, Zhao XP, Zhao CP, Zhang FT, Chen XP (2012) Molecular characterization of novel TaNAC genes in wheat and overexpression of TaNAC2a confers drought tolerance in tobacco. Physiol Plant 144(3):210–224

    Article  CAS  PubMed  Google Scholar 

  • Tardif G, Kane NA, Adam H, Labrie L, Major G, Gulick P, Sarhan F, Laliberte JF (2007) Interaction network of proteins associated with abiotic stress response and development in wheat. Plant Mol Biol 63(5):703–718

    Article  CAS  PubMed  Google Scholar 

  • Urao T, Yamaguchishinozaki K, Urao S, Shinozaki K (1993) An arabidopsis Myb homolog is induced by dehydration stress and its gene-product binds to the conserved Myb recognition sequence. Plant Cell 5(11):1529–1539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verslues PE, Agarwal M, Katiyar-Agarwal S, Zhu JH, Zhu JK (2006) Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant J 45(4):523–539

    Article  CAS  PubMed  Google Scholar 

  • Vrebalov J, Ruezinsky D, Padmanabhan V, White R, Medrano D, Drake R, Schuch W, Giovannoni J (2002) A MADS-box gene necessary for fruit ripening at the tomato ripening-inhibitor (Rin) locus. Science 296(5566):343–346

    Article  CAS  PubMed  Google Scholar 

  • Wei B, Cai T, Zhang RZ, Li AL, Huo NX, Li S, Gu YQ, Vogel J, Jia JZ, Qi YJ et al (2009) Novel microRNAs uncovered by deep sequencing of small RNA transcriptomes in bread wheat (Triticum aestivum L.) and Brachypodium distachyon (L.) Beauv. Funct Integr Genomics 9(4):499–511

    Article  CAS  PubMed  Google Scholar 

  • Wei B, Liu DM, Guo JJ, Leseberg CH, Zhang XQ, Mao L (2013) Functional divergence of two duplicated D-lineage MADS-box genes BdMADS2 and BdMADS4 from Brachypodium distachyon. J Plant Physiol 170(4):424–431

    Article  CAS  PubMed  Google Scholar 

  • Wellburn AR (1994) The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol 144(3):307–313

    Article  CAS  Google Scholar 

  • Xie QL, Hu ZL, Zhu ZG, Dong TT, Zhao ZP, Cui BL, Chen GP (2014) Overexpression of a novel MADS-box gene SlFYFL delays senescence, fruit ripening and abscission in tomato. Sci Rep 4(7491):4367

    PubMed  PubMed Central  Google Scholar 

  • Xiong LM, Schumaker KS, Zhu JK (2002) Cell signaling during cold, drought, and salt stress. Plant Cell 14:S165–S183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2005) Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters. Trends Plant Sci 10(2):88–94

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Tian LH, Zhao JF, Song Y, Zhang CJ, Guo Y (2009) Identification of an apoplastic protein involved in the initial phase of salt stress response in rice root by two-dimensional electrophoresis. Plant Physiol 149(2):916–928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang CJ, Liu JX, Zhang YY, Cai XF, Gong PJ, Zhang JH, Wang TT, Li HX, Ye ZB (2011) Overexpression of SlGMEs leads to ascorbate accumulation with enhanced oxidative stress, cold, and salt tolerance in tomato. Plant Cell Rep 30(3):389–398

    Article  CAS  PubMed  Google Scholar 

  • Zhang ZB, Li HY, Zhang DF, Liu YH, Fu J, Shi YS, Song YC, Wang TY, Li Y (2012) Characterization and expression analysis of six MADS-box genes in maize (Zea mays L.). J Plant Physiol 169(8):797–806

    Article  CAS  PubMed  Google Scholar 

  • Zhou JL, Wang XF, Jiao YL, Qin YH, Liu XG, He K, Chen C, Ma LG, Wang J, Xiong LZ et al (2007) Global genome expression analysis of rice in response to drought and high-salinity stresses in shoot, flag leaf, and panicle. Plant Mol Biol 63(5):591–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu TT, Nevo E, Sun DF, Peng JH (2012) Phylogenetic analyses unravel the evolutionary history of NAC proteins in plants. Evolution 66(6):1833–1848

    Article  CAS  PubMed  Google Scholar 

  • Zhu MK, Chen GP, Zhang JL, Zhang YJ, Xie QL, Zhao ZP, Pan Y, Hu ZL (2014) The abiotic stress-responsive NAC-type transcription factor SlNAC4 regulates salt and drought tolerance and stress-related genes in tomato (Solanum lycopersicum). Plant Cell Rep 33(11):1851–1863

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (Nos. 30600044, 31572129), and the Fundamental Research Funds for the Central Universities (No. 106112015CDJZR235504), and Chongqing University Postgraduates’ Innovation Project (CYB15027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zongli Hu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 194 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, X., Chen, G., Cui, B. et al. Solanum lycopersicum agamous-like MADS-box protein AGL15-like gene, SlMBP11, confers salt stress tolerance. Mol Breeding 36, 125 (2016). https://doi.org/10.1007/s11032-016-0544-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-016-0544-1

Keywords

Navigation