Skip to main content
Log in

Meta-analysis to refine map position and reduce confidence intervals for delayed-canopy-wilting QTLs in soybean

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Slow canopy wilting in soybean has been identified as a potentially beneficial trait for ameliorating drought effects on yield. Previous research identified QTLs for slow wilting from two different biparental populations, and this information was combined with data from three other populations to identify nine QTL clusters for slow wilting on Gm02, Gm05, Gm11, Gm 14, Gm17, and Gm19. The QTL cluster on Gm14 was eliminated because these QTLs appeared to be false positives. In the present research, QTLs from these remaining eight clusters were compiled onto the soybean consensus map for meta-QTL analysis. Five model selection criteria were used to determine the most appropriate number of meta-QTLs at these eight chromosomal regions. For a QTL cluster on Gm02, two meta-QTLs were identified, whereas for the remaining seven QTL clusters the single meta-QTL model was most appropriate. Thus, the analysis identified nine meta-QTLs associated with slow wilting. Meta-analysis decreased the confidence intervals from an average of 21.4 cM for the eight QTL clusters to 10.8 cM for the meta-QTLs. Averaged R2 values of the nine meta-QTLs in eight QTL clusters were 0.13 and ranged from 0.09 to 0.22. Meta-QTLs on Gm11 and Gm19 had the highest R2 values (0.22 and 0.20, respectively).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abdel-Haleem H, Lee GJ, Boerma RH (2011) Identification of QTL for increased fibrous roots in soybean. Theor Appl Genet 122:935–946

    Article  PubMed  Google Scholar 

  • Abdel-Haleem H, Carter TE Jr, Purcell LC, King CA, Ries LL, Chen PC, Schapaugh W Jr, Sinclair TR, Boerma HR (2012) Mapping of quantitative trait loci for canopy-wilting trait in soybean (Glycine max (L) Merr). Theor Appl Genet 125:837–846

    Article  CAS  PubMed  Google Scholar 

  • Abdel-Haleem H, Pengsheng J, Boerma HR, Li Z (2013) An R package for SNP marker based parent-offspring tests. Plant Methods 9:44

    Article  PubMed  PubMed Central  Google Scholar 

  • Arahana VS, Graef GL, Specht JE, Steadman JR, Eskridge KM (2001) Identification of QTLs for resistance to Sclerotinia sclerotiorum in soybean. Crop Sci 41:180–188

    Article  CAS  Google Scholar 

  • Arcade A, Labourdette A, Falque M, Mangin B (2004) Biomercator: integrating genetic maps and QTL towards discovery of candidate genes. Bioinformatics 20:2324–2326

    Article  CAS  PubMed  Google Scholar 

  • Bachlava E, Dewey R, Burton J, Cardinal A (2009) Mapping and comparison of quantitative trait loci for oleic acid seed content in two segregating soybean populations. Crop Sci 49:433–442

    Article  CAS  Google Scholar 

  • Becker KG, Simon RM, Bailey-Wilson JE, Freidlin B, Biddison WE, McFarland HF, Trent JM (1998) Clustering of nonmajor histocompatibility complex susceptibility candidate loci in human autoimmune diseases. Proc Nat Acad Sci 95:9979–9984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Broman KW, Wu H, Sen S, Churchill GA (2003) R/qtl: QTL mapping in experimental crosses. Bioinformatics 19:889–890

    Article  CAS  PubMed  Google Scholar 

  • Burnham K, Dorrance A, VanToai T, Martin S, St Martin SK (2003) Quantitative trait loci for partial resistance to Phytophthora sojae in soybean. Crop Sci 43:1610–1617

    Article  CAS  Google Scholar 

  • Buzzell RI (1971) Inheritance of a soybean flowering response to fluorescent-daylength conditions. Can J Genet Cytol 13:703–707

    Google Scholar 

  • Charlson DV, Bhatnagar S, King CA, Ray JD, Sneller CH, Carter TE Jr, Purcell LC (2009) Polygenic inheritance of canopy wilting in soybean [Glycine max (L) Merr]. Theor Appl Genet 119:587–594

    Article  PubMed  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    CAS  PubMed  PubMed Central  Google Scholar 

  • Concibido VC, Diers BW, Arelli PR (2004) A decade of QTL mapping for cyst nematode resistance in soybean. Crop Sci 44:1121–1131

    Article  CAS  Google Scholar 

  • Darvasi A, Soller M (1997) A simple method to calculate resolving power and confidence interval of QTL map location. Behav Genet 27:125–132

    Article  CAS  PubMed  Google Scholar 

  • Darvasi A, Vinreb A, Minke V, Weller JI, Soller M (1993) Detecting marker-QTL linkage and estimating QTL gene effect and map location using a saturated genetic map. Genetics 134:943–951

    CAS  PubMed  PubMed Central  Google Scholar 

  • Desikan R, Cheung MK, Bright J, Henson D, Hancock JT, Neill SJ (2004) ABA, hydrogen peroxide and nitric oxide signaling in stomatal guard cells. J Exp Bot 55:205–212

    Article  CAS  PubMed  Google Scholar 

  • Du W, Yu D, Fu S (2009a) Analysis of QTLs for the trichome density on the upper and downer surface of leaf blade in soybean [Glycine max (L) Merr]. Agric Sci China 8:529–537

    Article  CAS  Google Scholar 

  • Du W, Yu D, Fu S (2009b) Detection of quantitative trait loci for yield and drought tolerance traits in soybean using a recombinant inbred line population. J Integr Plant Biol 51:868–878

    Article  CAS  PubMed  Google Scholar 

  • Du W, Wang M, Fu S, Yu D (2009c) Mapping QTLs for seed yield and drought susceptibility index in soybean (Glycine max (L) Merr) across different environments. J Genet Genom 36:721–731

    Article  Google Scholar 

  • Du W, Yu D, Fu S (2009d) Detection of quantitative trait loci for yield and drought tolerance traits in soybean using a recombinant inbred line population. J Integr Plant Biol 51:868–878

    Article  CAS  PubMed  Google Scholar 

  • Githiri S, Watanabe S, Harada K, Takahashi R (2006) QTL analysis of flooding tolerance in soybean at an early vegetative growth stage. Plant Breed 125:613–618

    Article  CAS  Google Scholar 

  • Goffinet B, Gerber S (2000) Quantitative trait loci: a meta analysis. Genetics 155:463–473

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guo B, Sleper DA, Lu P, Shannon JG (2006) QTLs associated with resistance to soybean cyst nematode in soybean: meta-analysis of QTL location. Crop Sci 46:595–602

    Article  Google Scholar 

  • Gutierrez-Gonzalez J, Wu X, Zhang J, Lee J, Ellersieck M, Shannon J, Yu O, Nguyen H, Sleper D (2009) Genetic control of soybean seed isoflavone content: importance of statistical model and epistasis in complex traits. Theor Appl Genet 119:1069–1083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guzman P, Diers B, Neece D, St MartinS, LeRoy A, Grau C, Hughes T, Nelson R (2007) QTL associated with yield in three backcross-derived populations of soybean. Crop Sci 47:111–122

    Article  CAS  Google Scholar 

  • Hegstad JM, Tarter JA, Vodkin LO, Nickell CD (2000) Positioning the Wp flower color locus on the soybean genome map. Crop Sci 40:534–537

    Article  CAS  Google Scholar 

  • Hwang S, King CA, Davies MK, Ray JD, Cregan PB, Purcell LC (2013) QTL analysis of shoot ureide and nitrogen concentrations in soybean [Glycine max (L) Merr]. Crop Sci 53:1–13

    Article  Google Scholar 

  • Hwang S, Ray JD, Cregan PB, King CA, Davies MK, Purcell LC (2014) Genetics and mapping of quantitative traits for nodule number, weight, and size in soybean (Glycine max (L) Merr). Euphytica 195:419–434

    Article  CAS  Google Scholar 

  • Hwang S, King CA, Chen P, Ray JD, Cregan PB, Carter TE Jr, Li Z, Abdel-Haleem H, Matson KW, Schapaugh W Jr, Purcell LC (2015) Confirmation of delayed canopy wilting QTLs from multiple soybean mapping populations. Theor Appl Genet 128:2047–2065

    Article  PubMed  Google Scholar 

  • Hyten DL, Choi IY, Song Q, Specht JE, Carter TE Jr, Shoemaker RC, Hwang EY, Matukumalli LK, Cregan PB (2010) A high density integrated genetic linkage map of soybean and the development of a 1536 universal soy linkage panel for quantitative trait locus mapping. Crop Sci 50:1–9

    Article  Google Scholar 

  • Jansen RC (1993) Interval mapping of multiple quantitative trait loci. Genetics 135:205–211

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kabelka EA, Diers BW, Fehr WR, LeRoy AR, Baianu IC, You T, Neece DJ, Nelson RL (2004) Putative alleles for increased yield from soybean plant introductions. Crop Sci 44:784–791

    Article  Google Scholar 

  • Kang S, Kwak M, Kim H, Choung M, Han W, Baek I, Kim M, Lee K, Lee S (2009) Population-specific QTLs and their different epistatic interactions for pod dehiscence in soybean [Glycine max (L) Merr]. Euphytica 166:15–24

    Article  Google Scholar 

  • Kao CH, Zeng ZB, Teasdale RD (1999) Multiple interval mapping for quantitative trait loci. Genetics 152:1203–1216

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kazi S, Shultz J, Afzal J, Johnson J, Njiti V, Lightfoot D (2008) Separate loci underlie resistance to root infection and leaf scorch during soybean sudden death syndrome. Theor Appl Genet 116:967–977

    Article  CAS  PubMed  Google Scholar 

  • Kearsey MJ, Hyne V (1994) QTL analysis: a simple marker regression approach. Theor Appl Genet 89:698–702

    Article  CAS  PubMed  Google Scholar 

  • Keim P, Diers BW, Shoemaker RC (1990a) Genetic analysis of hard seededness with molecular markers. Theor Appl Genet 79:465–469

    Article  CAS  PubMed  Google Scholar 

  • Keim P, Diers BW, Olson TC, Shoemaker RC (1990b) RFLP mapping in soybean: association between marker loci and variation in quantitative traits. Genetics 126:735–742

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khan N, Githiri S, Benitez E, Abe J, Kawasaki S, Hayashi T, Takahashi R (2008) QTL analysis of cleistogamy in soybean. Theor Appl Genet 117:479–487

    Article  CAS  PubMed  Google Scholar 

  • Kim H, Kang S, Suh D (2005) Analysis of quantitative trait loci associated with leaflet types in two recombinant inbred lines of soybean. Plant Breed 124:582–589

    Article  CAS  Google Scholar 

  • Kim K, Diers B, Hyten D, Mian MR, Shannon J, Nelson R (2012) Identification of positive yield QTL alleles from exotic soybean germplasm in two backcross populations. Theor Appl Genet 125:1353–1369

    Article  PubMed  Google Scholar 

  • King CA, Purcell LC, Brye KR (2009) Differential wilting among soybean genotypes differing in response to water deficit. Crop Sci 49(290):298

    Google Scholar 

  • Komatsu K, Okuda S, Takahashi M, Matsunaga R, Nakazawa Y (2007) Quantitative trait loci mapping of pubescence density and flowering time of insect-resistant soybean. Genet Mol Biol 30:635–639

    Article  Google Scholar 

  • Korir P, Qi B, Wang Y, Zhao T, Yu D, Chen S, Gai J (2011) A study on relative importance of additive, epistasis and unmapped QTL for aluminum tolerance at seedling stage in soybean. Plant Breed 130:551–562

    Article  CAS  Google Scholar 

  • Lande R, Thompson R (1990) Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics 124:743–756

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lander E, Kruglyak L (1995) Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat Genet 11:241–247

    Article  CAS  PubMed  Google Scholar 

  • Lee SH, Park KY, Lee HS, Park EH, Boerma HR (2001) Genetic mapping of QTLs conditioning soybean sprout yield and quality. Theor Appl Genet 103:702–709

    Article  CAS  Google Scholar 

  • Li Z, Wilson RF, Rayford WE, Boerma HR (2002) Molecular mapping genes conditioning reduced palmitic acid content in N87-2122-4 soybean. Crop Sci 42:373–378

    Article  CAS  Google Scholar 

  • Li G, Li H, Cheng L, Zhang Y (2010a) QTL Analysis for dynamic expression of chlorophyll content in soybean. Acta Agron Sin 36:242–248

    CAS  Google Scholar 

  • Li H, Liu H, Han Y, Wu X, Teng W, Liu G, Li W (2010b) Identification of QTL underlying vitamin E contents in soybean seed among multiple environments. Theor Appl Genet 120:1405–1413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Zhao T, Wang Y, Yu D, Chen S, Zhou R, Gai J (2011) Genetic structure composed of additive QTL, epistatic QTL pairs and collective unmapped minor QTL conferring oil content and fatty acid components of soybeans. Euphytica 182:117–132

    Article  Google Scholar 

  • Lin SF, Baumer J, Ivers D, Cianzio SR, Shoemaker RC (2000) Nutrient solution screening of Fe chlorosis resistance in soybean evaluated by molecular characterization. J Plant Nutr 23:1915–1928

    Article  CAS  Google Scholar 

  • Liu W, Kim M, Van K, Lee Y, Li H, Liu X, Lee S (2011) QTL Identification of yield-related traits and their association with flowering and maturity in soybean. J Crop Sci Biotech 14:65–70

    Article  Google Scholar 

  • Mansur LM, Lark KG, Kross H, Oliveira A (1993) Interval mapping of quantitative trait loci for reproductive, morphological, and seed traits of soybean (Glycine max (L) Merr). Theor Appl Genet 86:907–913

    CAS  PubMed  Google Scholar 

  • Mansur LM, Orf JH, Chase K, Jarvik T, Cregan PB, Lark KG (1996) Genetic mapping of agronomic traits using recombinant inbred lines of soybean. Crop Sci 36:1327–1336

    Article  CAS  Google Scholar 

  • Maughan PJ, Saghai-Maroof MA, Buss GR (1996) Molecular-marker analysis of seed-weight: genomic locations, gene action, and evidence for orthologous evolution among three legume species. Theor Appl Genet 93:574–579

    Article  CAS  PubMed  Google Scholar 

  • Molnar SJ, Rai S, Charette M, Cober ER (2003) Simple sequence repeat markers linked to E1, E2, E3, and E7 maturity genes in soybean. Genome 46:1024–1036

    Article  CAS  PubMed  Google Scholar 

  • Narvel JM, Walker DR, Rector BG, All JN, Parrott WA, Boerma HR (2001) A retrospective DNA marker assessment of the development of insect resistant soybean. Crop Sci 41:1931–1939

    Article  CAS  Google Scholar 

  • Neill SJ, Desikan R, Clarke A, Hurst RD, Hancock JT (2002) Hydrogen peroxide and nitric oxide as signaling molecules in plants. J Exp Bot 53:123–1242

    Article  Google Scholar 

  • Orf JH, Chase K, Jarvik T, Mansur LM, Cregan PB, Adler FR, Lark KG (1999) Genetics of soybean agronomic traits: I. Comparison of three related recombinant inbred populations. Crop Sci 39:1642–1651

    Article  Google Scholar 

  • Oyoo M, Benitez E, Matsumura H, Takahashi R (2010) QTL analysis of seed coat cracking in soybean. Crop Sci 50:1230–1235

    Article  Google Scholar 

  • Palmer RG, Kilen TC (1987) Qualitative genetics and cytogenetics. In: Wilcox JR (ed) Soybeans: improvement, production and uses, 2nd ed. Agron Monogr 16 ASA, CSSA, SSSA, Madison, pp 135–209

  • Pooprompan P, Wasee S, Toojinda T, Abe J, Chanprame S, Srinives P (2006) Molecular marker analysis of days to flowering in vegetable soybean (Glycine max (L) Merr). Kasetsart J Nat Sci 40:573–581

    Google Scholar 

  • Qi Z, Wu Q, Han X, Sun Y, Du X, Liu C, Jiang H, Hu G, Chen Q (2011a) Soybean oil content QTL mapping and integrating with meta-analysis method for mining genes. Euphytica 179:499–514

    Article  Google Scholar 

  • Qi Z, Sun Y, Wu Q, Liu C, Hu G, Chen Q (2011b) A meta-analysis of seed protein concentration QTL in soybean. Can J Plant Sci 91:221–230

    Article  CAS  Google Scholar 

  • Reyna N, Sneller CH (2001) Evaluation of marker-assisted introgression of yield QTL alleles into adapted soybean. Crop Sci 41:1317–1321

    Article  Google Scholar 

  • Ries LL, Purcell LC, Carter TE Jr, Edwards JT, King CA (2012) Physiological traits contributing to differential canopy wilting in soybean under drought. Crop Sci 52:272–281

    Article  Google Scholar 

  • Sadok W, Sinclair TR (2011) Crops yield increase under water-limited conditions: review of recent physiological advances for soybean genetic improvement. Adv Agron 113:325–349

    Article  Google Scholar 

  • Salas P, Oyarzo-Llaipen J, Wang D, Chase K, Mansur L (2006) Genetic mapping of seed shape in three populations of recombinant inbred lines of soybean (Glycine max (L) Merr). Theor Appl Genet 113:1459–1466

    Article  CAS  PubMed  Google Scholar 

  • Sayama T, Nakazaki T, Ishikawa G, Yagasaki K, Yamada N, Hirota N, Hirata K, Yoshikawa T, Saito H, Teraishi M, Okumoto Y, Tsukiyama T, Tanisaka T (2009) QTL analysis of seed-flooding tolerance in soybean (Glycine max [L.] Merr.). Plant Sci 176:514–521

    Article  CAS  PubMed  Google Scholar 

  • Sinclair TR, Messina CD, Beatty A, Samples M (2010) Assessment across the United States of the benefits of altered soybean drought traits. Agron J 102:475–482

    Article  Google Scholar 

  • Specht JE, Hume DJ, Kumudini SV (1999) Soybean yield potential-a genetic and physiological perspective. Crop Sci 39:1560–1570

    Article  Google Scholar 

  • Specht JE, Chase K, Macrander M, Graef GL, Chung J, Markwell JP, Germann M, Orf JH, Lark KG (2001) Soybean response to water: a QTL analysis of drought tolerance. Crop Sci 41:493–509

    Article  CAS  Google Scholar 

  • Sun Y, Luan H, Qi Z, Shan D, Liu C, Hui G, Chen Q (2012) Mapping and meta-analysis of height QTLs in soybean. Legume Genomics Genet 3:1–7

    Google Scholar 

  • Thomson MJ, Tai TH, McClung AM, Lai XH (2003) Mapping quantitative trait loci for yield, yield components and morphological traits in an advanced backcross population between Oryza rufipogon and the Oryza sativa cultivar Jefferson. Theor Appl Genet 107:479–493

    Article  CAS  PubMed  Google Scholar 

  • Veyrieras J, Goffinet B, Charcosset A (2007) MetaQTL: a package of new computational methods for the meta-analysis of QTL mapping experiments. BMC Bioinform 8:49–64

    Article  Google Scholar 

  • Xu S (2003) Theoretical basis of the Beavis effect. Genetics 165:2259–2268

    PubMed  PubMed Central  Google Scholar 

  • Xu Z, Zou F, Vision TJ (2005) Improving quantitative trait loci mapping resolution in experimental crosses by the use of genotypically selected samples. Genetics 170:401–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yue P, Sleper DA, Arelli PR (2001) Mapping resistance to multiple races of Heterodera glycines in soybean PI 89772. Crop Sci 41:1589–1595

    Article  CAS  Google Scholar 

  • Zeng ZB (1994) Precise mapping of quantitative trait loci. Genetics 136:1457–1468

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang W, Wang Y, Luo G, Zhang J, He C, Wu X, Gai J, Chen S (2004) QTL mapping of ten agronomic traits on the soybean (Glycine max (L) Merr) genetic map and their association with EST markers. Theor Appl Genet 108:1131–1139

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Li W, Zhang L, Dai H, Ci D, Xu R (2013) QTL Mapping of soybean resistance to whitefly (Bemisia tabaci Gennadius) under multi-environment conditions. Aust J Crop Sci 7:1212–1218

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support for this research from the United Soybean Board. This work was also supported in part by the United States Department of Agriculture–Agriculture Research Service (USDA-ARS) project number 6066-21220-012-00D.

Authors contribution

SH designed the experiment and performed the statistical analysis. CAK, TEC, HAH, WS, and LCP conducted field experiments and collected phenotypic data. PC, CAK, HAH, ZL, KWM, and LCP developed the populations. JDR, PBC, ZL, and KWM collected the genotypic data. SH and LCP co-wrote the manuscript. JDR, TEC, PC, ZL, and KWM critically revised the manuscript. LCP coordinated and supervised the project. All authors read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Larry C. Purcell.

Ethics declarations

Conflict of interest

The authors of the manuscript entitled ‘Meta-analysis of delayed canopy wilting QTLs in soybean’ declare that they have no competing interests.

Additional information

Mention of a trademark or proprietary product does not constitute a guarantee or warranty of the product by the U.S. Department of Agriculture and does not imply approval or the exclusion of other products that may also be suitable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hwang, S., King, C.A., Chen, P. et al. Meta-analysis to refine map position and reduce confidence intervals for delayed-canopy-wilting QTLs in soybean. Mol Breeding 36, 91 (2016). https://doi.org/10.1007/s11032-016-0516-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-016-0516-5

Keywords

Navigation