Skip to main content
Log in

Exploring almond genetic variability useful for peach improvement: mapping major genes and QTLs in two interspecific almond × peach populations

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Genetic analysis of a diverse set of 42 traits for flower (5), phenology (9), fruit quality (19), leaf (8) and disease resistance (1) was carried out in two interspecific almond × peach populations, an F2 (T × E) and a BC1 (T1E), from the cross between ‘Texas’ almond and ‘Earlygold’ peach. Traits related to flower, phenology, fruit quality, leaf morphology and resistance to powdery mildew were phenotyped over 3 years in two locations and studied for co-segregation with a large set of SNP and SSR markers. Three maps were used, one for the T × E and two for the T1E (T1E and E) population. Nine major genes were identified and mapped: anther color (Ag/ag and Ag2/ag2), flower color (Fc2/fc2), maturity date (MD/md), almond fruit type (almond vs. peach; Alf/alf), juiciness (Jui/jui), blood flesh (DBF2/dbf2), powdery mildew resistance (Vr3) and flower type (showy/non-showy; Sh/sh). These genes were often located in genome positions different from those for major genes for similar traits mapped before. Two of them explain fundamental aspects that define the fruit of peach with respect to that of almond: Alf and Jui, for its thick and juicy mesocarp, respectively. The genetics of quantitative traits was studied, and 32 QTLs were detected, with consistent behavior over the years. New alleles identified from almond for important traits such as red skin color, blood flesh, fruit weight and powdery mildew resistance may prove useful for the introduction of new variability into the peach gene pool used in commercial breeding programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Arús P, Messeguer R, Viruel M, Tobutt K, Dirlewanger E, Santi F, Quarta R, Ritter E (1994) The European Prunus mapping project: progress in the almond linkage map. Euphytica 77(1–2):97–100

    Article  Google Scholar 

  • Arús P, Verde I, Sosinski B, Zhebentyayeva T, Abbott AG (2012) The peach genome. Tree Genet Genomes 8:531–547

    Article  Google Scholar 

  • Beavis W (1998) QTL analyses: power, precision, and accuracy. In: Paterson AH (ed) Molecular dissection of complex traits. CRC Press, Boca Raton, pp 145–162

    Google Scholar 

  • Byrne DH, Raseira MB, Bassi D, Piagnani MC, Gasic K, Reighard GL, Moreno MA, Pérez S (2012) Peach. In: Badenes ML, Byrne DH (eds) Fruit breeding (handbook of plant breeding). Springer, New York, pp 513–569

    Google Scholar 

  • Cao K, Zheng Z, Wang L et al (2014) Comparative population genomics reveals the domestication history of the peach, Prunus persica, and human influences on perennial fruit crops. Genome Biol 15:415

    PubMed Central  PubMed  Google Scholar 

  • Carrillo-Mendoza O, Chaparro JX, Williamson J (2013) Branching and blind node incidence in interspecific backcross families of peach. HortScience 48:1119–1124

    Google Scholar 

  • Claverie M, Bosselut N, Lecouls AC, Voisin R, Lafargue B, Poizat C, Kleinhentz M, Laigret F, Dirlewanger E, Esmenjaud D (2004) Location of independent root-knot nematode resistance genes in plum and peach. Theor Appl Genet 108:765–773

    Article  CAS  PubMed  Google Scholar 

  • Connors CH (1920) Some notes on the inheritance of unit characters in the peach. Proc Am Soc Hortic Sci 16:24–36

    Google Scholar 

  • Dicenta F, García JE, Carbonell EA (1993) Heritability of flowering, productivity and maturity in almond. J Hortic Sci 68:113–120

    Google Scholar 

  • Dirlewanger E, Moing A, Rothan C, Svanella L, Pronier V, Guye A, Plomion C, Monet R (1999) Mapping QTLs controlling fruit quality in peach [Prunus persica (L.) Batsch]. Theor Appl Genet 98:18–31

    Article  CAS  Google Scholar 

  • Dirlewanger E, Graziano E, Joobeur T, Garriga-Calderé F, Cosson P, Howad W, Arús P (2004) Comparative mapping and marker-assisted selection in Rosaceae fruit crops. Proc Natl Acad Sci USA 101:9891–9896

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dirlewanger E, Cosson P, Boudehri K, Renaud C, Capdeville G, Tauzin Y, Laigret F, Moing A (2006) Development of a second-generation genetic linkage map for peach [Prunus persica (L.) Batsch] and characterization of morphological traits affecting flower and fruit. Tree Genet Genomes 3:1–13

    Article  Google Scholar 

  • Dirlewanger E, Quero-Garcia J, Le Dantec L et al (2012) Comparison of the genetic determinism of two key phenological traits, flowering and maturity dates, in three Prunus species: peach, apricot and sweet cherry. Heredity 109:280–292

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Donoso JM, Eduardo I, Picañol R, Batlle I, Howad W, Aranzana MJ, Arús P (2015) High-density mapping suggests cytoplasmic male sterility with two restorer genes in almond × peach progenies. Hortic Res 2:15016

    Article  PubMed Central  PubMed  Google Scholar 

  • Eduardo I, Pacheco I, Chietera G, Bassi D, Pozzi C, Vecchietti A, Rossini L (2011) QTL analysis of fruit quality traits in two peach intraspecific populations and importance of maturity date pleiotropic effect. Tree Genet Genomes 7:323–335

    Article  Google Scholar 

  • Eshed Y, Zamir D (1994) A genomic library of Lycopersicon pennellii in L. esculentum: a tool for fine mapping of genes. Euphytica 79:175–179

    Article  CAS  Google Scholar 

  • Espley RV, Brendolise C, Chagné D et al (2009) Multiple repeats of a promoter segment causes transcription factor autoregulation in red apples. Plant Cell 21:168–183

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Felipe AJ (2009) ‘Felinem, ‘Garnem’ and ‘Monegro’ almond × peach hybrid rootstocks. HortSci 44:196–197

    Google Scholar 

  • Foulongne M, Pascal T, Pfeiffer F, Kervella J (2003) QTLs for powdery mildew resistance in peach × Prunus davidiana crosses: consistency across generations and environments. Mol Breed 12:33–50

    Article  CAS  Google Scholar 

  • Fresnedo-Ramírez J, Bink MCAM, van de Weg E, Famula TR, Crisosto CH, Frett TJ, Gasic K, Peace CP, Gradziel TM (2015) QTL mapping of pomological traits in peach and related species breeding germplasm. Mol Breeding 35:166

    Article  Google Scholar 

  • Frett TJ, Reighard GL, Okie WR, Gasic K (2014) Mapping quantitative trait loci associated with blush in peach [Prunus persica (L.) Batsch]. Tree Genet Genomes 10:367–381

    Article  Google Scholar 

  • Gillen AM, Bliss FA (2005) Identification and mapping of markers linked to the Mi gene for root-not nematode resistance in peach. J Am Soc Hortic Sci 130(1):24–33

    CAS  Google Scholar 

  • Gradziel TM (2003) Interspecific hybridizations and subsequent gene introgression within Prunus subgenus Amygdalus. Acta Hortic 622:249–255

    Article  CAS  Google Scholar 

  • Kester DE, Raddi P, Asay R (1973) Correlation among chilling requirements for germination, blooming and leafing in almond (Prunus amygdalus Batsch). Genetics 74:s135

    Google Scholar 

  • Lander E, Green P, Abrahamson J, Barlow A, Daly M, Lincoln S, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  CAS  PubMed  Google Scholar 

  • Li XW, Meng XQ, Jia HJ et al (2013) Peach genetic resources: diversity, population structure and linkage disequilibrium. BMC Genet 14:84

    Article  PubMed Central  PubMed  Google Scholar 

  • Micheletti D, Dettori MT, Micali S et al (2015) Whole-genome analysis of diversity and SNP-major gene association in Peach Germplasm. PLoS ONE 10(9):e0136803

    Article  PubMed Central  PubMed  Google Scholar 

  • Mnejja M, Garcia-Mas J, Audergon JM, Arús P (2010) Prunus microsatellite marker transferability across rosaceous crops. Tree Genet Genomes 6:689–700

    Article  Google Scholar 

  • Ogundiwin EA, Peace CP, Gradziel TM, Parfitt DE, Bliss FA, Crisosto CH (2009) A fruit quality gene map of Prunus. BMC Genom 10:587

    Article  Google Scholar 

  • Pacheco I, Eduardo I, Rossini L, Vecchieti A, Bassi D (2009) QTL mapping for peach (Prunus persica (L.) Batsch) resistance to powdery mildew and brown rot. In: Proceedings of the 53rd Italian Society of Agricultural Genetics Annual Congress. Torino, Italy

  • Pascal T, Pfeiffer F, Kervella J (2010) Powdery mildew resistance in the peach cultivar Pamirskij 5 is genetically linked with the Gr gene for leaf color. HortScience 45:150–152

    Google Scholar 

  • Picañol R, Eduardo I, Aranzana MJ, Howad W, Batlle I, Iglesias I, Alonso JM, Arús P (2013) Combining linkage and association mapping to search for markers linked to the flat fruit character in peach. Euphytica 190:279–288

    Article  Google Scholar 

  • Quilot B, Wu BH, Kervella J, GénardM FoulongneM, Moreau K (2004) QTL analysis of quality traits in an advanced backcross between Prunus persica cultivars and the wild relative species P. davidiana. Theor Appl Genet 109:884–897

    Article  CAS  PubMed  Google Scholar 

  • Raga V, Bernet GP, Carbonell EA, Asins MJ (2012) Segregation and linkage analyses in two complex populations derived from the citrus rootstock Cleopatra mandarin. Inheritance of seed reproductive traits. Tree Genet Genomes 8:1061–1071

    Article  Google Scholar 

  • Rahim MA, Busatto N, Trainotti L (2014) Regulation of anthocyanin biosynthesis in peach fruits. Planta 240:913–929

    Article  CAS  PubMed  Google Scholar 

  • Romeu JF, Monforte AJ, Sánchez G, Granell A, García-Brunton J, Badenes ML, Ríos G (2014) Quantitative trait loci affecting reproductive phenology in peach. BMC Plant Biol 14:52–68

    Article  PubMed Central  PubMed  Google Scholar 

  • Rosyara UR, Bink MCAM, van de Weg E, Zhang GR, Wang DC, Sebolt A, Dirlewanger E, Quero-Garcia J, Schuster M, Iezzoni AF (2013) Fruit size QTL identification and the prediction of parental QTL genotypes and breeding values in multiple pedigreed populations of sweet cherry. Mol Breeding 32(4):875–887

    Article  Google Scholar 

  • Rubio M, Pascal T, Bachellez A, Lambert P (2010) Quantitative trait loci analysis of Plum pox virus resistance in Prunus davidiana P1908: new insights on the organization of genomic resistance regions. Tree Genet Genomes 6:291–304

    Article  Google Scholar 

  • Sánchez-Pérez R, Dicenta F, Martínez-Gómez P (2012) Inheritance of chilling and heat requirements for flowering in almond and QTL analysis. Tree Genet Genomes 8:379–389

    Article  Google Scholar 

  • Sauge MH, Lambert P, Pascal T (2012) Co-localisation of host plant resistance QTLs affecting the performance and feeding behaviour of the aphid Myzus persicae in the peach tree. Heredity 108:292–301

    Article  PubMed Central  PubMed  Google Scholar 

  • Scorza R, Mehlenbacher SA, Lightner GW (1985) Inbreeding and coancestry of freestone peach cultivars of the eastern United States and implications for peach germplasm improvement. J Am Soc Hortic Sci 110:547–552

    Google Scholar 

  • Shapiro SS, Wilk MB (1965) An analysis of variance test for normality (complete samples). Biometrika 52(3–4):591–611

    Article  Google Scholar 

  • Shen Z, Confolent C, Lambert P, Poëssel J-L, Quilot-Turion B, Yu M, Ma R, Pascal T (2013) Characterization and genetic mapping of a new blood-flesh trait controlled by the single dominant locus DBF in peach. Tree Genet Genomes 9:1435–1446

    Article  Google Scholar 

  • Shulaev V, Korban SS, Sosinski B et al (2008) Multiple models for Rosaceae genomic. Plant Physiol 147:985–1003

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Socquet-Juglard D, Christen D, Devènes G, Gessler C, Duffy B, Patocchi A (2013) Mapping architectural, phenological, and fruit quality QTLs in apricot. Plant Mol Biol Rep 31:387–397

    Article  CAS  Google Scholar 

  • Sooriyapathirana SS, Khan A, Sebolt AM, Wang D, Bushakra JM, Lin-Wang K, Allan AC, Gardiner SE, Chagné D, Iezzoni AF (2010) QTL analysis and candidate gene mapping for skin and flesh color in sweet cherry fruit (Prunus avium L.). Tree Genet Genomes 6:821–832

    Article  Google Scholar 

  • Tanksley SD (1993) Mapping polygenes. Ann Rev Genet 27:205–233

    Article  CAS  PubMed  Google Scholar 

  • Van Ooijen JW, Boer MP, Jansen RC, Maliepaard C (2002) MapQTL® 4.0. Software for the calculation of QTL positions on genetic maps. Plant Research International, Wageningen

    Google Scholar 

  • Verde I, Quarta R, Cerdrola C, Dettori MT (2002) QTL analysis of agronomic traits in a BC1 peach population. Acta Hortic 592:291–297

    Article  CAS  Google Scholar 

  • Verde I, Bassil N, Scalabrin S et al (2012) Development and evaluation of a 9K SNP array for peach by internationally coordinated SNP detection and validation in breeding germplasm. PLoS ONE 7:e35668

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Verde I, Abbott AG, Scalabrin S et al (2013) The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nat Genet 45:487–494

    Article  CAS  PubMed  Google Scholar 

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93(1):77–78

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Karle R, Iezzoni AF (2000) QTL analysis of flower and fruit traits in sour cherry. Theor Appl Genet 100:535–544

    Article  CAS  Google Scholar 

  • Yamamoto T, Shimada T, Imai T, Yaegaki H, Haji T, Matsuta N, Yamaguchi M, Hayashi T (2001) Characterization of morphological traits based on a genetic linkage map in peach. Breed Sci 51:271–278

    Article  CAS  Google Scholar 

  • Zhang JB, Sebolt AM, Wang D, Bink M, Olmstead JW, Iezzoni AF (2010) Fruit size QTL analysis of an F1 population derived from a cross between a domesticated sweet cherry cultivar and a wild forest sweet cherry. Tree Genet Genomes 6:25–36

    Article  CAS  Google Scholar 

  • Zhou Y, Zhou H, Lin-Wang K, Vimolmangkang S, Espley RV, Wang L, Allan AC, Han YP (2014) Transcriptome analysis and transient transformation suggest an ancient duplicated MYB transcription factor as a candidate gene for leaf red coloration in peach. BMC Plant Biol 14:388

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

Funding of this research was granted in part by the Spanish Ministry of Economy and Knowledge (Project AGL2012-40228). We thank C. Fontich and A. Ortigosa (IRTA) for maintenance of the plant populations in Lleida and Cabrils, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Arús.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Donoso, J.M., Picañol, R., Serra, O. et al. Exploring almond genetic variability useful for peach improvement: mapping major genes and QTLs in two interspecific almond × peach populations. Mol Breeding 36, 16 (2016). https://doi.org/10.1007/s11032-016-0441-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-016-0441-7

Keywords

Navigation