Skip to main content
Log in

Epigenomic modification in rice controls meiotic recombination and segregation distortion

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

The low frequency of meiotic recombination in chromosomal regions other than hotspots is a general obstacle to efficient breeding. A number of active genes are present in recombination-repressed centromeric regions in higher eukaryotes, suggesting that suppression of meiotic recombination prevents shuffling of genes within a centromeric region. In this study, by using an inter-subspecific cross of Oryza sativa L., we show that modification of inactive chromatin states by either genetic or chemical inhibition of chromatin modifying proteins induced changes in both the position of meiotic recombination and, unexpectedly, the pattern of segregation distortion of parental alleles. Antisense knockdown of rice homologues of DECREASE IN DNA METHYLATION1, which is required for the maintenance of heterochromatin in Arabidopsis thaliana, induced a recombination hotspot in a centromeric region accompanied by a steep increase in the proportion of heterozygotes. Our results describe a previously undocumented phenomenon in which artificial chromatin modification could be used to change the pattern of segregation distortion in rice and open up novel possibilities for efficient crop breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bernatavichute YV, Zhang X, Cokus S, Pellegrini M, Jacobsen SE (2008) Genome-wide association of histone H3 lysine nine methylation with CHG methylation in Arabidopsis thaliana. PLoS ONE 3:e3156

    Article  PubMed Central  PubMed  Google Scholar 

  • Black BE, Bassett EA (2008) The histone variant CENP-A and centromere specification. Curr Opin Cell Biol 20:91–100

    Article  CAS  PubMed  Google Scholar 

  • Bühler M, Gasser SM (2009) Silent chromatin at the middle and ends: lessons from yeasts. EMBO J 28:2149–2161

    Article  PubMed Central  PubMed  Google Scholar 

  • Burt A, Trivers R (2006) Genes in conflict. The biology of selfish genetic elements. Belknap Press, Cambridge

    Google Scholar 

  • Colomé-Tatché M, Cortijo S, Wardenaar R et al (2012) Features of the Arabidopsis recombination landscape resulting from the combined loss of sequence variation and DNA methylation. Proc Natl Acad Sci USA 109:16240–16245

    Article  PubMed Central  PubMed  Google Scholar 

  • Copenhaver GP, Nickel K, Kuromori T et al (1999) Genetic definition and sequence analysis of Arabidopsis centromeres. Science 286:2468–2474

    Article  CAS  PubMed  Google Scholar 

  • Folco HD, Pidoux AL Urano T, Allshire RC (2008) Heterochromatin and RNAi are required to establish CENP-A chromatin at centromeres. Science 319:94–97

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fukagawa T, Nogami M, Yoshikawa M, Ikeno M, Okazaki T, Tagami Y, Nakayama T, Oshimura M (2004) Dicer is essential for formation of the heterochromatin structure in vertebrate cells. Nat Cell Biol 6:784–791

    CAS  Google Scholar 

  • Gendrel AV, Lippman Z, Yordan C, Colot V, Martienssen RA (2002) Dependence of heterochromatic histone H3 methylation patterns on the Arabidopsis gene DDM1. Science 297:1871–1873

    Article  CAS  PubMed  Google Scholar 

  • Harushima Y, Kurata N, Yano M, Nagamura Y, Sasaki T, Minobe Y, Nakagahra M (1996) Detection of segregation distortions in an indica-japonica rice cross using a high-resolution molecular map. Theor Appl Genet 92:145–150

    Article  CAS  PubMed  Google Scholar 

  • Higo H, Tahir M, Takashima K et al (2012) DDM1 (Decrease in DNA Methylation) genes in rice (Oryza sativa). Mol Genet Genomics 287:785–792

    Article  CAS  PubMed  Google Scholar 

  • Lister R, O’Malley RC, Tonti-Filippini J, Gregory BD, Berry CC, Millar AH, Ecker JR (2008) Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell 133:523–536

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lyttle TW (1991) Segregation distorters. Annu Rev Genet 25:511–557

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Peres E, Moore G (2008) To check or not check? The application of meiotic studies to plant breeding. Curr Opin Plant Biol 11:222–227

    Article  Google Scholar 

  • Melamed-Bessudo C, Levy AA (2012) Deficiency in DNA methylation increases meiotic crossover rates in euchromatic but not in heterochromatic regions in Arabidopsis. Proc Natl Acad Sci USA 109:E981–E988

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mirouze M, Lieberman-Lazarovich M, Aversano R, Bucher E, Nicolet J, Reinders J, Paszkowski J (2012) Loss of DNA methylation affects the recombination landscape in Arabidopsis. Proc Natl Acad Sci USA 109:5880–5885

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nagaki K, Cheng Z, Ouyang S, Talbert PB, Kim M, Jones KM, Henikoff S, Buell CR, Jiang J (2004) Sequencing of a rice centromere uncovers active genes. Nat Genet 36:138–145

    Article  CAS  PubMed  Google Scholar 

  • Numa H, Kim JM, Matsui A et al (2010) Transduction of RNA-directed DNA methylation signals to repressive histone marks in Arabidopsis thaliana. EMBO J 29:352–362

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Perrella G, Consiglio MF, Aiese-Cigliano R, Cremona G, Sanchez-Moran E, Barra L, Errico A, Bressan RA, Franklin FC, Conicella C (2010) Histone hyperacetylation affects meiotic recombination and chromosome segregation in Arabidopsis. Plant J 62:796–806

    Article  CAS  PubMed  Google Scholar 

  • Rhoades MM (1942) Preferential segregation in maize. Genetics 27:395–407

    PubMed Central  CAS  PubMed  Google Scholar 

  • Saffery R, Sumer H, Hassan S, Wong LH, Craig JM, Todoroki K, Anderson M, Stafford A, Choo KHA (2003) Transcription within a functional human centromere. Mol Cell 12:509–516

    Article  Google Scholar 

  • Satoh K, Doi K, Nagata T et al (2007) Gene organization in rice revealed by full-length cDNA mapping and gene expression analysis through microarray. PLoS ONE 2:e1235

    Article  PubMed Central  PubMed  Google Scholar 

  • Talbert PB, Henikoff S (2010) Centromeres convert but don’t cross. PLoS Biol 8:e1000326

    Article  PubMed Central  PubMed  Google Scholar 

  • Vongs A, Kakutani T, Martienssen RA, Richards EJ (1993) Arabidopsis thaliana DNA methylation mutants. Science 260:1926–1928

    Article  CAS  PubMed  Google Scholar 

  • Wijnker E, de Jong H (2008) Managing meiotic recombination in plant breeding. Trends Plant Sci 13:640–646

    Article  CAS  PubMed  Google Scholar 

  • Wu C-I, Lyttle TW, Wu M-L, Lin G-F (1988) Association between a satellite DNA sequence and the Responder of Segregation Distorter in D. melanogaster. Cell 54:179–189

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Mizuno H, Hayashi-Tsugane M et al (2003) Physical maps and recombination frequency of six rice chromosomes. Plant J 36:720–730

    Article  CAS  PubMed  Google Scholar 

  • Yan H, Jin W, Nagaki K, Tian S, Ouyang S, Buell CR, Talbert PB, Henikoff S, Jiang J (2005) Transcription and histone modifications in the recombination-free region spanning a rice centromere. Plant Cell 17:3227–3238

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yan H, Talbert PB, Lee HR, Jett J, Henikoff S, Chen F, Jiang J (2008) Intergenic location of rice centromeric chromatin. PLoS Biol 6:e286

    Article  PubMed Central  PubMed  Google Scholar 

  • Yelina NE, Choi K, Chelysheva L et al (2012) Epigenetic remodeling of meiotic crossover frequency in Arabidopsis thaliana DNA methyltransferase mutants. PLoS Genet 8:e1002844

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank K.-I. Nonomua for the RCS2 centromeric probe; T. Kanno and H. Rothnie for their comments on this study; K. Hioki, H. Onodera and A. Tagiri for technical assistance. This work was supported by grants of Promotion of Research Activity and NIAS Strategic Research Fund from National Institute of Agrobiological Sciences, NIBB Cooperative Research Program (Next-generation DNA Sequencing Initiative: 11-703), the Ministry of Agriculture, Forestry and Fisheries (PGE1004), and JST/CREST, Japan.

Conflict of interest

National Institute of Agrobiological Sciences holds a patent on genetic and chemical modification of positions of meiotic recombination described in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshiki Habu.

Additional information

Accession codes The genome re-sequencing data have been deposited in the DNA Data Bank of Japan under the accession number DRX001982, and the microarray data have been deposited in NCBI Gene Expression Omnibus under accession number GSE31775.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Habu, Y., Ando, T., Ito, S. et al. Epigenomic modification in rice controls meiotic recombination and segregation distortion. Mol Breeding 35, 103 (2015). https://doi.org/10.1007/s11032-015-0299-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-015-0299-0

Keywords

Navigation